Real-time semantic segmentation based on BiSeNetV2 for wild road

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Honghuan Chen, Xiaoke Lan
{"title":"Real-time semantic segmentation based on BiSeNetV2 for wild road","authors":"Honghuan Chen, Xiaoke Lan","doi":"10.1515/jisys-2023-0205","DOIUrl":null,"url":null,"abstract":"\n State-of-the-art segmentation models have shown great performance in structured road segmentation. However, these models are not suitable for the wild roads, which are highly unstructured. To tackle the problem of real-time semantic segmentation of wild roads, we propose a Multi-Information Concatenate Network based on BiSeNetV2 and construct a segmentation dataset Dalle Molle institute for artificial intelligence feature segmentation (IDSIAFS) based on Dalle Molle institute for artificial intelligence. The proposed model removes structural redundancy and optimizes the semantic branch based on BiSeNetV2. Moreover, the Dual-Path Semantic Inference Layer (TPSIL) reduces computation by designing the channel dimension of the semantic branch feature map and aggregates feature maps of different depths. Finally, the segmentation results are achieved by fusing both shallow detail information and deep semantic information. Experiments on the IDSIAFS dataset demonstrate that our proposed model achieves an 89.5% Intersection over Union. The comparative experiments on Cityscapes and India driving dataset benchmarks show that proposed model achieves good inference accuracy and faster inference speed.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

State-of-the-art segmentation models have shown great performance in structured road segmentation. However, these models are not suitable for the wild roads, which are highly unstructured. To tackle the problem of real-time semantic segmentation of wild roads, we propose a Multi-Information Concatenate Network based on BiSeNetV2 and construct a segmentation dataset Dalle Molle institute for artificial intelligence feature segmentation (IDSIAFS) based on Dalle Molle institute for artificial intelligence. The proposed model removes structural redundancy and optimizes the semantic branch based on BiSeNetV2. Moreover, the Dual-Path Semantic Inference Layer (TPSIL) reduces computation by designing the channel dimension of the semantic branch feature map and aggregates feature maps of different depths. Finally, the segmentation results are achieved by fusing both shallow detail information and deep semantic information. Experiments on the IDSIAFS dataset demonstrate that our proposed model achieves an 89.5% Intersection over Union. The comparative experiments on Cityscapes and India driving dataset benchmarks show that proposed model achieves good inference accuracy and faster inference speed.
基于 BiSeNetV2 的野外道路实时语义分割
最先进的分割模型在结构化道路分割方面表现出色。然而,这些模型并不适合高度非结构化的野外道路。为了解决野外道路的实时语义分割问题,我们提出了基于 BiSeNetV2 的多信息串联网络,并构建了基于 Dalle Molle 人工智能研究所特征分割(IDSIAFS)的分割数据集。所提出的模型基于 BiSeNetV2 消除了结构冗余并优化了语义分支。此外,双路径语义推理层(TPSIL)通过设计语义分支特征图的通道维度和聚合不同深度的特征图来减少计算量。最后,通过融合浅层细节信息和深层语义信息实现分割结果。在 IDSIAFS 数据集上的实验表明,我们提出的模型实现了 89.5% 的交叉率(Intersection over Union)。在城市景观和印度驾驶数据集基准上进行的对比实验表明,所提出的模型具有良好的推理准确性和更快的推理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信