Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jian Zhang, Huitao Zhou, Heilong Mi
{"title":"Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system","authors":"Jian Zhang, Huitao Zhou, Heilong Mi","doi":"10.1515/anona-2023-0139","DOIUrl":null,"url":null,"abstract":"\n <jats:p>This article is concerned with the following Hamiltonian elliptic system: <jats:disp-formula id=\"j_anona-2023-0139_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0139_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>ε</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mi>ε</m:mi>\n <m:mover accent=\"true\">\n <m:mrow>\n <m:mi>b</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>→</m:mo>\n </m:mrow>\n </m:mover>\n <m:mo>⋅</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mi>V</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi>v</m:mi>\n <m:mo>=</m:mo>\n <m:msub>\n <m:mrow>\n <m:mi>H</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>v</m:mi>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>u</m:mi>\n <m:mo>,</m:mo>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mspace width=\"1em\" />\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n <m:mspace width=\"0.33em\" />\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>ε</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>v</m:mi>\n <m:mo>−</m:mo>\n <m:mi>ε</m:mi>\n <m:mover accent=\"true\">\n <m:mrow>\n <m:mi>b</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>→</m:mo>\n </m:mrow>\n </m:mover>\n <m:mo>⋅</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>v</m:mi>\n <m:mo>+</m:mo>\n <m:mi>v</m:mi>\n <m:mo>+</m:mo>\n <m:mi>V</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:msub>\n <m:mrow>\n <m:mi>H</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>u</m:mi>\n <m:mo>,</m:mo>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mspace width=\"1em\" />\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n <m:mspace width=\"0.33em\" />\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:mfenced>\n </m:math>\n <jats:tex-math>\\left\\{\\begin{array}{l}-{\\varepsilon }^{2}\\Delta u+\\varepsilon \\overrightarrow{b}\\cdot \\nabla u+u+V\\left(x)v={H}_{v}\\left(u,v)\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\\\ -{\\varepsilon }^{2}\\Delta v-\\varepsilon \\overrightarrow{b}\\cdot \\nabla v+v+V\\left(x)u={H}_{u}\\left(u,v)\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\end{array}\\right.</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0139","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

This article is concerned with the following Hamiltonian elliptic system: ε 2 Δ u + ε b u + u + V ( x ) v = H v ( u , v ) in R N , ε 2 Δ v ε b v + v + V ( x ) u = H u ( u , v ) in R N , \left\{\begin{array}{l}-{\varepsilon }^{2}\Delta u+\varepsilon \overrightarrow{b}\cdot \nabla u+u+V\left(x)v={H}_{v}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -{\varepsilon }^{2}\Delta v-\varepsilon \overrightarrow{b}\cdot \nabla v+v+V\left(x)u={H}_{u}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right. where
一类非线性哈密顿椭圆系统半经典解的多重性
本文涉及以下哈密顿椭圆系统: - ε 2 Δ u + ε b → ⋅ ∇ u + u + V ( x ) v = R N 中的 H v ( u , v ) , - ε 2 Δ v - ε b → ⋅ ∇ v + v + V (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信