Membrane distillation of synthetic urine for use in space structural habitat systems

IF 3.8 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
V. Sagar, Lauren M. Mekalip, J. Lynam
{"title":"Membrane distillation of synthetic urine for use in space structural habitat systems","authors":"V. Sagar, Lauren M. Mekalip, J. Lynam","doi":"10.1515/gps-2023-0197","DOIUrl":null,"url":null,"abstract":"\n Low-energy separation of potable water from urine is an important area of research, particularly if humans hope to transcend their earth-bound origins. The high cost of water in rocket payloads means that it must be recycled and the byproducts of the crew used productively. Direct Contact Membrane Distillation (DCMD) can use low heat sources to separate water from urea, which can then be used as a plasticizer in regolith-based cement to make it more workable. In the present study, traditional cement curing was compared to vacuum curing for regolith-based cement where artificial urine, concentrated using DCMD, was added as a plasticizer. Increases in workability were found for increasing concentrations of urea. Porosity also tended to increase with increasing urea concentration. Surprisingly, Lunar Highlands Simulant regolith-based batches with urea that were cured under vacuum showed higher compressive strengths than those cured traditionally. No literature is available for DCMD use with urine, indicating that this research is novel and could have widespread applications, such as in desert environments or public urinals.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2023-0197","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-energy separation of potable water from urine is an important area of research, particularly if humans hope to transcend their earth-bound origins. The high cost of water in rocket payloads means that it must be recycled and the byproducts of the crew used productively. Direct Contact Membrane Distillation (DCMD) can use low heat sources to separate water from urea, which can then be used as a plasticizer in regolith-based cement to make it more workable. In the present study, traditional cement curing was compared to vacuum curing for regolith-based cement where artificial urine, concentrated using DCMD, was added as a plasticizer. Increases in workability were found for increasing concentrations of urea. Porosity also tended to increase with increasing urea concentration. Surprisingly, Lunar Highlands Simulant regolith-based batches with urea that were cured under vacuum showed higher compressive strengths than those cured traditionally. No literature is available for DCMD use with urine, indicating that this research is novel and could have widespread applications, such as in desert environments or public urinals.
膜蒸馏合成尿液,用于太空结构栖息地系统
从尿液中低能分离饮用水是一个重要的研究领域,特别是如果人类希望超越其地球起源的话。火箭有效载荷中水的成本很高,这意味着必须对水进行回收,并对乘员的副产品进行有效利用。直接接触膜蒸馏(DCMD)可以利用低热源将水从尿素中分离出来,然后将尿素用作基于碎石的水泥中的增塑剂,使其更具可加工性。在本研究中,将传统的水泥固化与真空固化进行了比较,在真空固化中加入了使用 DCMD 浓缩的人造尿液作为增塑剂。结果发现,尿素浓度越高,可加工性越好。孔隙率也随着尿素浓度的增加而增加。令人惊讶的是,在真空条件下固化的月球高地模拟雷灰岩基尿素批次显示出比传统固化方法更高的抗压强度。目前还没有关于将 DCMD 用于尿液的文献,这表明这项研究具有新颖性,可广泛应用于沙漠环境或公共小便池等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Processing and Synthesis
Green Processing and Synthesis CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
6.70
自引率
9.30%
发文量
78
审稿时长
7 weeks
期刊介绍: Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信