Global boundedness in a two-dimensional chemotaxis system with nonlinear diffusion and singular sensitivity
IF 4.3
3区 材料科学
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guoqiang Ren, Xing Zhou
求助PDF
{"title":"Global boundedness in a two-dimensional chemotaxis system with nonlinear diffusion and singular sensitivity","authors":"Guoqiang Ren, Xing Zhou","doi":"10.1515/anona-2023-0125","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this study, we investigate the two-dimensional chemotaxis system with nonlinear diffusion and singular sensitivity: <jats:disp-formula id=\"j_anona-2023-0125_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0125_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>t</m:mi>\n </m:mrow>\n </m:msub>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mo>⋅</m:mo>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n <m:mo>−</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>−</m:mo>\n <m:mi>χ</m:mi>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mo>⋅</m:mo>\n <m:mfenced open=\"(\" close=\")\">\n <m:mrow>\n <m:mfrac>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>v</m:mi>\n </m:mrow>\n </m:mfrac>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>v</m:mi>\n </m:mrow>\n </m:mfenced>\n <m:mo>,</m:mo>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>,</m:mo>\n <m:mspace width=\"0.33em\" />\n <m:mi>t</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:msub>\n <m:mrow>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>t</m:mi>\n </m:mrow>\n </m:msub>\n <m:mo>=</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>v</m:mi>\n <m:mo>−</m:mo>\n <m:mi>v</m:mi>\n <m:mo>+</m:mo>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mi>g</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n <m:mo>,</m:mo>\n <m:mi>t</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>,</m:mo>\n <m:mspace width=\"0.33em\" />\n <m:mi>t</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\" />\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:mfenced>\n <m:mspace width=\"2.0em\" />\n <m:mspace width=\"2.0em\" />\n <m:mspace width=\"2.0em\" />\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mo>∗</m:mo>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>\\left\\{\\begin{array}{ll}{u}_{t}=\\nabla \\cdot \\left({u}^{\\theta -1}\\nabla u)-\\chi \\nabla \\cdot \\left(\\frac{u}{v}\\nabla v\\right),& x\\in \\Omega ,\\hspace{0.33em}t\\gt 0,\\\\ {v}_{t}=\\Delta v-v+u+g\\left(x,t),& x\\in \\Omega ,\\hspace{0.33em}t\\gt 0,\\\\ \\end{array}\\right.\\hspace{2.0em}\\hspace{2.0em}\\hspace{2.0em}\\left(\\ast )</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> in a bounded domain with smooth boundary. We present the global boundedness of weak solutions to the model (<jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0125_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>∗</m:mo>\n </m:math>\n <jats:tex-math>\\ast </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>) if <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0125_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>θ</m:mi>\n <m:mo>></m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:mfrac>\n </m:math>\n <jats:tex-math>\\theta \\gt \\frac{3}{2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and (1.10)–(1.11). This result improves our recent work.</jats:p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0125","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this study, we investigate the two-dimensional chemotaxis system with nonlinear diffusion and singular sensitivity:
u
t
=
∇
⋅
(
u
θ
−
1
∇
u
)
−
χ
∇
⋅
u
v
∇
v
,
x
∈
Ω
,
t
>
0
,
v
t
=
Δ
v
−
v
+
u
+
g
(
x
,
t
)
,
x
∈
Ω
,
t
>
0
,
(
∗
)
\left\{\begin{array}{ll}{u}_{t}=\nabla \cdot \left({u}^{\theta -1}\nabla u)-\chi \nabla \cdot \left(\frac{u}{v}\nabla v\right),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ {v}_{t}=\Delta v-v+u+g\left(x,t),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ \end{array}\right.\hspace{2.0em}\hspace{2.0em}\hspace{2.0em}\left(\ast )
in a bounded domain with smooth boundary. We present the global boundedness of weak solutions to the model (
∗
\ast
) if
θ
>
3
2
\theta \gt \frac{3}{2}
and (1.10)–(1.11). This result improves our recent work.
具有非线性扩散和奇异敏感性的二维趋化系统中的全局有界性
在本研究中,我们研究了具有非线性扩散和奇异敏感性的二维趋化系统: u t = ∇ ⋅ ( u θ - 1∇ u ) - χ ∇ ⋅ u v∇ v , x ∈ Ω , t > 0 , v t = Δ v - v + u + g ( x , t ) , x ∈
本文章由计算机程序翻译,如有差异,请以英文原文为准。