Global existence and finite-time blowup for a mixed pseudo-parabolic r(x)-Laplacian equation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiazhuo Cheng, Qiru Wang
{"title":"Global existence and finite-time blowup for a mixed pseudo-parabolic r(x)-Laplacian equation","authors":"Jiazhuo Cheng, Qiru Wang","doi":"10.1515/anona-2023-0133","DOIUrl":null,"url":null,"abstract":"\n This article is devoted to the study of the initial boundary value problem for a mixed pseudo-parabolic \n \n \n \n r\n \n (\n \n x\n \n )\n \n \n r\\left(x)\n \n -Laplacian-type equation. First, by employing the imbedding theorems, the theory of potential wells, and the Galerkin method, we establish the existence and uniqueness of global solutions with subcritical initial energy, critical initial energy, and supercritical initial energy, respectively. Then, we obtain the decay estimate of global solutions with sub-sharp-critical initial energy, sharp-critical initial energy, and supercritical initial energy, respectively. For supercritical initial energy, we also need to analyze the properties of \n \n \n \n ω\n \n \\omega \n \n -limits of solutions. Finally, we discuss the finite-time blowup of solutions with sub-sharp-critical initial energy and sharp-critical initial energy, respectively.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0133","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to the study of the initial boundary value problem for a mixed pseudo-parabolic r ( x ) r\left(x) -Laplacian-type equation. First, by employing the imbedding theorems, the theory of potential wells, and the Galerkin method, we establish the existence and uniqueness of global solutions with subcritical initial energy, critical initial energy, and supercritical initial energy, respectively. Then, we obtain the decay estimate of global solutions with sub-sharp-critical initial energy, sharp-critical initial energy, and supercritical initial energy, respectively. For supercritical initial energy, we also need to analyze the properties of ω \omega -limits of solutions. Finally, we discuss the finite-time blowup of solutions with sub-sharp-critical initial energy and sharp-critical initial energy, respectively.
混合伪抛物线 r(x)-Laplacian 方程的全局存在性和有限时间膨胀
本文主要研究混合伪抛物线 r ( x ) r\left(x) -拉普拉斯型方程的初边界值问题。首先,利用嵌入定理、势井理论和 Galerkin 方法,分别建立了亚临界初值能量、临界初值能量和超临界初值能量全局解的存在性和唯一性。然后,我们分别得到了亚临界初能、锐临界初能和超临界初能全局解的衰减估计值。对于超临界初能,我们还需要分析解的ω \omega -极限的性质。最后,我们将分别讨论亚锐临界初能和锐临界初能的解的有限时间炸毁问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信