Exploring the Subjectivity of English Academic Discourse in the Context of Big Data

IF 3.1 Q1 Mathematics
Ying Pan
{"title":"Exploring the Subjectivity of English Academic Discourse in the Context of Big Data","authors":"Ying Pan","doi":"10.2478/amns-2024-0489","DOIUrl":null,"url":null,"abstract":"\n This study develops a sentiment analysis model for English academic discourse based on word information to effectively understand and analyze the sentiment tendencies in English literary texts. The structure of the model includes word embedding layer, character-level feature extraction, word-level feature extraction and feature fusion and classification layer. The word embedding layer realizes the mapping between word vectors and word vectors by microblogging pre-trained word vectors. The character-level feature extraction session uses a multi-window convolutional layer to capture N-Gram information. In contrast, the word-level feature extraction obtains deeper semantic information through a Bi-LSTM layer and fuses it with character-level information to enhance robustness. The feature fusion and classification layer further combines these features and determines the fusion weights through a linear layer to achieve sentiment classification. In performance tests, the model achieves 92.5% sentiment classification accuracy on the standard dataset, an improvement of about 6% compared to traditional methods. In particular, the accuracy is improved by 5% when dealing with text with sentiment polarity transition, showing good adaptability. In addition, using 657 positive and 679 negative sentiment words as seed words effectively expands the sentiment lexicon and enhances the comprehensiveness and accuracy of sentiment analysis.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns-2024-0489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops a sentiment analysis model for English academic discourse based on word information to effectively understand and analyze the sentiment tendencies in English literary texts. The structure of the model includes word embedding layer, character-level feature extraction, word-level feature extraction and feature fusion and classification layer. The word embedding layer realizes the mapping between word vectors and word vectors by microblogging pre-trained word vectors. The character-level feature extraction session uses a multi-window convolutional layer to capture N-Gram information. In contrast, the word-level feature extraction obtains deeper semantic information through a Bi-LSTM layer and fuses it with character-level information to enhance robustness. The feature fusion and classification layer further combines these features and determines the fusion weights through a linear layer to achieve sentiment classification. In performance tests, the model achieves 92.5% sentiment classification accuracy on the standard dataset, an improvement of about 6% compared to traditional methods. In particular, the accuracy is improved by 5% when dealing with text with sentiment polarity transition, showing good adaptability. In addition, using 657 positive and 679 negative sentiment words as seed words effectively expands the sentiment lexicon and enhances the comprehensiveness and accuracy of sentiment analysis.
探索大数据背景下英语学术话语的主观性
本研究建立了基于单词信息的英语学术话语情感分析模型,以有效理解和分析英语文学文本中的情感倾向。该模型的结构包括词嵌入层、字符级特征提取、词级特征提取和特征融合分类层。单词嵌入层通过微博预先训练的单词向量实现单词向量与单词向量之间的映射。字符级特征提取环节使用多窗口卷积层来捕捉 N 符信息。相比之下,词级特征提取通过 Bi-LSTM 层获取更深层次的语义信息,并将其与字符级信息融合以增强鲁棒性。特征融合和分类层进一步结合这些特征,并通过线性层确定融合权重,从而实现情感分类。在性能测试中,该模型在标准数据集上的情感分类准确率达到 92.5%,比传统方法提高了约 6%。特别是在处理情感极性转换的文本时,准确率提高了 5%,显示了良好的适应性。此外,使用 657 个正面情感词和 679 个负面情感词作为种子词,有效地扩展了情感词库,提高了情感分析的全面性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics and Nonlinear Sciences
Applied Mathematics and Nonlinear Sciences Engineering-Engineering (miscellaneous)
CiteScore
2.90
自引率
25.80%
发文量
203
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信