Vanishing and blow-up solutions to a class of nonlinear complex differential equations near the singular point

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
J. Diblík, M. Ruzicková
{"title":"Vanishing and blow-up solutions to a class of nonlinear complex differential equations near the singular point","authors":"J. Diblík, M. Ruzicková","doi":"10.1515/anona-2023-0120","DOIUrl":null,"url":null,"abstract":"\n <jats:p>A singular nonlinear differential equation <jats:disp-formula id=\"j_anona-2023-0120_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:msup>\n <m:mrow>\n <m:mi>z</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>σ</m:mi>\n </m:mrow>\n </m:msup>\n <m:mfrac>\n <m:mrow>\n <m:mi mathvariant=\"normal\">d</m:mi>\n <m:mi>w</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi mathvariant=\"normal\">d</m:mi>\n <m:mi>z</m:mi>\n </m:mrow>\n </m:mfrac>\n <m:mo>=</m:mo>\n <m:mi>a</m:mi>\n <m:mi>w</m:mi>\n <m:mo>+</m:mo>\n <m:mi>z</m:mi>\n <m:mi>w</m:mi>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>z</m:mi>\n <m:mo>,</m:mo>\n <m:mi>w</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n </m:math>\n <jats:tex-math>{z}^{\\sigma }\\frac{{\\rm{d}}w}{{\\rm{d}}z}=aw+zwf\\left(z,w),</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>σ</m:mi>\n <m:mo>></m:mo>\n <m:mn>1</m:mn>\n </m:math>\n <jats:tex-math>\\sigma \\gt 1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, is considered in a neighbourhood of the point <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>z</m:mi>\n <m:mo>=</m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>z=0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> located either in the complex plane <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"double-struck\">C</m:mi>\n </m:math>\n <jats:tex-math>{\\mathbb{C}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> if <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>σ</m:mi>\n </m:math>\n <jats:tex-math>\\sigma </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a natural number, in a Riemann surface of a rational function if <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>σ</m:mi>\n </m:math>\n <jats:tex-math>\\sigma </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a rational number, or in the Riemann surface of logarithmic function if <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_007.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>σ</m:mi>\n </m:math>\n <jats:tex-math>\\sigma </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is an irrational number. It is assumed that <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_008.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>w</m:mi>\n <m:mo>=</m:mo>\n <m:mi>w</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>z</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>w=w\\left(z)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_009.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>a</m:mi>\n <m:mo>∈</m:mo>\n <m:mi mathvariant=\"double-struck\">C</m:mi>\n <m:mo>⧹</m:mo>\n <m:mrow>\n <m:mo>{</m:mo>\n <m:mrow>\n <m:mn>0</m:mn>\n </m:mrow>\n <m:mo>}</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>a\\in {\\mathbb{C}}\\setminus \\left\\{0\\right\\}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and that the function <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_010.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n </m:math>\n <jats:tex-math>f</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is analytic in a neighbourhood of the origin in <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_011.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"double-struck\">C</m:mi>\n <m:mo>×</m:mo>\n <m:mi mathvariant=\"double-struck\">C</m:mi>\n </m:math>\n <jats:tex-math>{\\mathbb{C}}\\times {\\mathbb{C}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. Considering <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_012.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>σ</m:mi>\n </m:math>\n <jats:tex-math>\\sigma </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> to be an integer, a rational, or an irrational number, for each of the above-mentioned cases, the existence is proved of analytic solutions <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0120_eq_013.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>w</m:mi>\n <m:mo>=</m:mo>\n <m:mi>w</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>z</m:mi>\n ","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0120","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A singular nonlinear differential equation z σ d w d z = a w + z w f ( z , w ) , {z}^{\sigma }\frac{{\rm{d}}w}{{\rm{d}}z}=aw+zwf\left(z,w), where σ > 1 \sigma \gt 1 , is considered in a neighbourhood of the point z = 0 z=0 located either in the complex plane C {\mathbb{C}} if σ \sigma is a natural number, in a Riemann surface of a rational function if σ \sigma is a rational number, or in the Riemann surface of logarithmic function if σ \sigma is an irrational number. It is assumed that w = w ( z ) w=w\left(z) , a C { 0 } a\in {\mathbb{C}}\setminus \left\{0\right\} , and that the function f f is analytic in a neighbourhood of the origin in C × C {\mathbb{C}}\times {\mathbb{C}} . Considering σ \sigma to be an integer, a rational, or an irrational number, for each of the above-mentioned cases, the existence is proved of analytic solutions w = w ( z
奇点附近一类非线性复微分方程的消失解和炸裂解
奇异非线性微分方程 z σ d w d z = a w + z w f ( z , w ) , {z}^{sigma }\frac{\rm{d}}w}{\rm{d}}z}=aw+zwf\left(z,w), 其中 σ > 1 \sigma \gt 1 , 在点 z = 0 z=0 的邻域中考虑,如果 σ \sigma 是自然数,则该点位于复平面 C {\mathbb{C}} 中;如果 σ \sigma 是有理数,则该点位于有理函数的黎曼曲面中;如果 σ \sigma 是无理数,则该点位于对数函数的黎曼曲面中。假定 w = w ( z ) w=w\left(z) , a ∈ C ⧹ { 0 } a\in {\mathbb{C}}\setminus \left\{0\right\} , 并且函数 f f 是有理数。 并且函数 f f 在 C × C 的原点邻域中是解析的 {\mathbb{C}}\times {\mathbb{C}}. .考虑到 σ \sigma 是整数、有理数或无理数,对于上述每一种情况,都证明了解析解 w = w ( z) 的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信