Tamara Tadić, Bojana Markovic, Sandra Bulatović, Jelena Lukić, Jelena Radulović, A. Nastasović, A. Onjia
{"title":"Greenness of dispersive microextraction using molecularly imprinted polymers","authors":"Tamara Tadić, Bojana Markovic, Sandra Bulatović, Jelena Lukić, Jelena Radulović, A. Nastasović, A. Onjia","doi":"10.1515/revac-2023-0070","DOIUrl":null,"url":null,"abstract":"\n Molecularly imprinted polymers (MIPs) as materials with determined levels of selectivity and specificity for designated analytes have recently gained much attention in various application fields. However, with the growing adoption of green analytical chemistry (GAC) principles, it is essential to investigate the greenness of MIP synthesis and its subsequent application in sample preparation, as well as to evaluate the “green” nature of the developed analytical methodologies, such as dispersive solid-phase microextraction (DSPME). Accordingly, the main objective of this research was to evaluate the greenness of MIP-based glycidyl methacrylate synthesis and MIP use as a DSPME sorbent prior to high-performance liquid chromatography with mass spectrometry (HPLC-MS). The green perspective of MIP-DSPME prior to HPLC-MS was investigated using various analytical metric tools such as the Analytical Eco-Scale, the Green Analytical Procedure Index, and Analytical GREEnness (AGREE). Since these analytical tools are not fully implementable for the assessment of the greenness of the MIP synthesis, some alternative approaches were used to optimize the synthesis parameters to make the MIP DSPME sorbent as close as possible to the GAC principles. The calculated AGREE score (0.62) and 91 points in the Analytical Eco-Scale for the proposed DSPME technique using MIP indicated a high level of greenness.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"84 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2023-0070","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Molecularly imprinted polymers (MIPs) as materials with determined levels of selectivity and specificity for designated analytes have recently gained much attention in various application fields. However, with the growing adoption of green analytical chemistry (GAC) principles, it is essential to investigate the greenness of MIP synthesis and its subsequent application in sample preparation, as well as to evaluate the “green” nature of the developed analytical methodologies, such as dispersive solid-phase microextraction (DSPME). Accordingly, the main objective of this research was to evaluate the greenness of MIP-based glycidyl methacrylate synthesis and MIP use as a DSPME sorbent prior to high-performance liquid chromatography with mass spectrometry (HPLC-MS). The green perspective of MIP-DSPME prior to HPLC-MS was investigated using various analytical metric tools such as the Analytical Eco-Scale, the Green Analytical Procedure Index, and Analytical GREEnness (AGREE). Since these analytical tools are not fully implementable for the assessment of the greenness of the MIP synthesis, some alternative approaches were used to optimize the synthesis parameters to make the MIP DSPME sorbent as close as possible to the GAC principles. The calculated AGREE score (0.62) and 91 points in the Analytical Eco-Scale for the proposed DSPME technique using MIP indicated a high level of greenness.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico