Existence and uniqueness of solution for a singular elliptic differential equation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shanshan Gu, Bianxia Yang, Wenrui Shao
{"title":"Existence and uniqueness of solution for a singular elliptic differential equation","authors":"Shanshan Gu, Bianxia Yang, Wenrui Shao","doi":"10.1515/anona-2023-0126","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: <jats:disp-formula id=\"j_anona-2023-0126_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:mfrac>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n <m:mo>⋅</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:mi>μ</m:mi>\n <m:mi>h</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>q</m:mi>\n <m:mo>−</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>+</m:mo>\n <m:mi>λ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mspace width=\"1.0em\" />\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mi>u</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>→</m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mspace width=\"1em\" />\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>as</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mo>∣</m:mo>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n <m:mo>→</m:mo>\n <m:mo>+</m:mo>\n <m:mi>∞</m:mi>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:mfenced>\n </m:math>\n <jats:tex-math>\\left\\{\\begin{array}{l}-\\Delta u-\\frac{1}{2}\\left(x\\cdot \\nabla u)=\\mu h\\left(x){u}^{q-1}+\\lambda u-{u}^{p},\\hspace{1.0em}x\\in {{\\mathbb{R}}}^{N},\\\\ u\\left(x)\\to 0,\\hspace{1em}\\hspace{0.1em}\\text{as}\\hspace{0.1em}\\hspace{0.33em}| x| \\to +\\infty ,\\end{array}\\right.</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>N</m:mi>\n <m:mo>⩾</m:mo>\n <m:mn>3</m:mn>\n </m:math>\n <jats:tex-math>N\\geqslant 3</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mn>0</m:mn>\n <m:mo><</m:mo>\n <m:mi>q</m:mi>\n <m:mo><</m:mo>\n <m:mn>1</m:mn>\n </m:math>\n <jats:tex-math>0\\lt q\\lt 1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>λ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\lambda \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>p</m:mi>\n <m:mo>></m:mo>\n <m:mn>1</m:mn>\n </m:math>\n <jats:tex-math>p\\gt 1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\mu \\gt 0</ja","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0126","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: Δ u 1 2 ( x u ) = μ h ( x ) u q 1 + λ u u p , x R N , u ( x ) 0 , as x + , \left\{\begin{array}{l}-\Delta u-\frac{1}{2}\left(x\cdot \nabla u)=\mu h\left(x){u}^{q-1}+\lambda u-{u}^{p},\hspace{1.0em}x\in {{\mathbb{R}}}^{N},\\ u\left(x)\to 0,\hspace{1em}\hspace{0.1em}\text{as}\hspace{0.1em}\hspace{0.33em}| x| \to +\infty ,\end{array}\right. where N 3 N\geqslant 3 , 0 < q < 1 0\lt q\lt 1 , λ > 0 \lambda \gt 0 , p > 1 p\gt 1 , μ > 0 \mu \gt 0
奇异椭圆微分方程解的存在性和唯一性
本文关注以下正解的存在性、唯一性和不存在性: - Δ u - 1 2 ( x ⋅∇ u ) = μ h ( x ) u q - 1 + λ u - u p , x∈ R N , u ( x ) → 0 , as ∣ x ∣ → + ∞ , \left\{\begin{array}{l}-\Delta u-\frac{1}{2}\left(x\cdot \nabla u)=\mu h\left(x){u}^{q-
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信