Jian Yang, Laihao Yu, Yingyi Zhang, Zhichen Han, Jialong Yang
{"title":"Application of laser surface detection technology in blast furnace gas flow control and optimization","authors":"Jian Yang, Laihao Yu, Yingyi Zhang, Zhichen Han, Jialong Yang","doi":"10.1515/htmp-2024-0001","DOIUrl":null,"url":null,"abstract":"\n The gas flow distribution inside a blast furnace affects its smelting. Laser surface detection technology can control the gas flow distribution and promote the stable and smooth running of blast furnace by observing and adjusting the surface condition in the blast furnace in real-time. The laser surface inspection technology in blast furnace gas flow control and optimization was introduced, with Masteel 4,000 m3 blast furnace as an example. The results showed that the 30 W high-power laser had good penetration performance and could obtain clear scanning images of the material surface. In the process of strengthening smelting, the laser detection system determined that the central airflow of blast furnace was insufficient, resulting in a decrease in furnace condition stability, and promptly took measures to adjust the angle of the mineral coke fabric equipment and lifting line. After adjusting the material line, the central airflow was properly suppressed and stabilized, the angle of edge platform increased, the airflow developed properly, and two suitable gas flows were formed, which finally stabilized the furnace condition. Meanwhile, the small duct airflow other than the central airflow was found in time through the laser detection system, which provided conditions for operators to take measures to effectively eliminate the duct airflow, thereby avoiding big impacts on the blast furnace operation and technical and economic indexes. Therefore, the laser surface detection technology could effectively judge the gas flow distribution in the furnace, which contributed to timely adjustment of process parameters and optimization of blast furnace operation.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2024-0001","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The gas flow distribution inside a blast furnace affects its smelting. Laser surface detection technology can control the gas flow distribution and promote the stable and smooth running of blast furnace by observing and adjusting the surface condition in the blast furnace in real-time. The laser surface inspection technology in blast furnace gas flow control and optimization was introduced, with Masteel 4,000 m3 blast furnace as an example. The results showed that the 30 W high-power laser had good penetration performance and could obtain clear scanning images of the material surface. In the process of strengthening smelting, the laser detection system determined that the central airflow of blast furnace was insufficient, resulting in a decrease in furnace condition stability, and promptly took measures to adjust the angle of the mineral coke fabric equipment and lifting line. After adjusting the material line, the central airflow was properly suppressed and stabilized, the angle of edge platform increased, the airflow developed properly, and two suitable gas flows were formed, which finally stabilized the furnace condition. Meanwhile, the small duct airflow other than the central airflow was found in time through the laser detection system, which provided conditions for operators to take measures to effectively eliminate the duct airflow, thereby avoiding big impacts on the blast furnace operation and technical and economic indexes. Therefore, the laser surface detection technology could effectively judge the gas flow distribution in the furnace, which contributed to timely adjustment of process parameters and optimization of blast furnace operation.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.