Multiple solutions for the quasilinear Choquard equation with Berestycki-Lions-type nonlinearities

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yue Jia, Xianyong Yang
{"title":"Multiple solutions for the quasilinear Choquard equation with Berestycki-Lions-type nonlinearities","authors":"Yue Jia, Xianyong Yang","doi":"10.1515/anona-2023-0130","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we study the following quasilinear equation with nonlocal nonlinearity <jats:disp-formula id=\"j_anona-2023-0130_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:mi>κ</m:mi>\n <m:mi>u</m:mi>\n <m:mi>Δ</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>+</m:mo>\n <m:mi>λ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mi>μ</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>*</m:mo>\n <m:mi>F</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mspace width=\"1em\" />\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n <m:mspace width=\"0.33em\" />\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:math>\n <jats:tex-math>-\\Delta u-\\kappa u\\Delta \\left({u}^{2})+\\lambda u=\\left({| x| }^{-\\mu }* F\\left(u))f\\left(u),\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>κ</m:mi>\n </m:math>\n <jats:tex-math>\\kappa </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a parameter, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>N</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>3</m:mn>\n </m:math>\n <jats:tex-math>N\\ge 3</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>∈</m:mo>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mi>N</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>\\mu \\in \\left(0,N)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>F</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>t</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:msubsup>\n <m:mrow>\n <m:mrow>\n <m:mo>∫</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:mn>0</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mi>t</m:mi>\n </m:mrow>\n </m:msubsup>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>s</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi mathvariant=\"normal\">d</m:mi>\n <m:mi>s</m:mi>\n </m:math>\n <jats:tex-math>F\\left(t)={\\int }_{0}^{t}f\\left(s){\\rm{d}}s</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>λ</m:mi>\n </m:math>\n <jats:tex-math>\\lambda </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a positive constant. We are going to analyze two cases: the <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_007.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msub>\n </m:math>\n <jats:tex-math>{L}_{2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-norm of the solution is not confirmed and the <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_008.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n ","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0130","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the following quasilinear equation with nonlocal nonlinearity Δ u κ u Δ ( u 2 ) + λ u = ( x μ * F ( u ) ) f ( u ) , in R N , -\Delta u-\kappa u\Delta \left({u}^{2})+\lambda u=\left({| x| }^{-\mu }* F\left(u))f\left(u),\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}, where κ \kappa is a parameter, N 3 N\ge 3 , μ ( 0 , N ) \mu \in \left(0,N) , F ( t ) = 0 t f ( s ) d s F\left(t)={\int }_{0}^{t}f\left(s){\rm{d}}s , and λ \lambda is a positive constant. We are going to analyze two cases: the L 2 {L}_{2} -norm of the solution is not confirmed and the L 2
具有贝里斯基-狮子型非线性的准线性乔夸德方程的多重解
在本文中,我们将研究以下具有非局部非线性的准线性方程 - Δ u - κ u Δ ( u 2 ) +λ u = ( ∣ x ∣ - μ * F ( u ) ) f ( u ) , in R N , -\Delta u-\kappa u\Delta \left({u}^{2})+\lambda u=\left({| x| }^{\mu }* F\left(u))f\left(u),\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信