Performance Optimization of Machine Learning Algorithms Based on Spark

IF 3.1 Q1 Mathematics
Weikang Luo, Shenglin Zhang, Yinggen Xu
{"title":"Performance Optimization of Machine Learning Algorithms Based on Spark","authors":"Weikang Luo, Shenglin Zhang, Yinggen Xu","doi":"10.2478/amns-2024-0416","DOIUrl":null,"url":null,"abstract":"\n This paper proposes a performance optimization strategy for Spark-based machine learning algorithms in Shuffle and memory data management modules. The Shuffle module is optimized by introducing Observer monitoring module in Spark cluster to achieve task status monitoring and dynamic ShuffleWrite task generation. Meanwhile, an adaptive caching mechanism for RDD data addresses the lack of in-memory data caching. The performance-optimized algorithm performs well in the experiments, with a clustering accuracy of 89% and a response time that is 5% faster than the Random Forest algorithm. In road network traffic state discrimination, the optimized algorithm’s classification decision F-measure value is as high as 99.53%, which is 5.32% higher than that before unoptimization, and the running time is 767 seconds less than that of the unoptimized algorithm when dealing with about 6,880,000 pieces of data, which significantly improves the efficiency and accuracy.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns-2024-0416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a performance optimization strategy for Spark-based machine learning algorithms in Shuffle and memory data management modules. The Shuffle module is optimized by introducing Observer monitoring module in Spark cluster to achieve task status monitoring and dynamic ShuffleWrite task generation. Meanwhile, an adaptive caching mechanism for RDD data addresses the lack of in-memory data caching. The performance-optimized algorithm performs well in the experiments, with a clustering accuracy of 89% and a response time that is 5% faster than the Random Forest algorithm. In road network traffic state discrimination, the optimized algorithm’s classification decision F-measure value is as high as 99.53%, which is 5.32% higher than that before unoptimization, and the running time is 767 seconds less than that of the unoptimized algorithm when dealing with about 6,880,000 pieces of data, which significantly improves the efficiency and accuracy.
基于 Spark 的机器学习算法性能优化
本文提出了基于Spark的机器学习算法在Shuffle和内存数据管理模块中的性能优化策略。通过在Spark集群中引入Observer监控模块,实现任务状态监控和动态ShuffleWrite任务生成,对Shuffle模块进行了优化。同时,针对 RDD 数据的自适应缓存机制解决了内存数据缓存不足的问题。经过性能优化的算法在实验中表现良好,聚类准确率达到 89%,响应时间比随机森林算法快 5%。在路网交通状态判别中,优化算法的分类决策 F-measure 值高达 99.53%,比未优化前提高了 5.32%,在处理约 688 万条数据时,运行时间比未优化算法减少了 767 秒,显著提高了效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics and Nonlinear Sciences
Applied Mathematics and Nonlinear Sciences Engineering-Engineering (miscellaneous)
CiteScore
2.90
自引率
25.80%
发文量
203
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信