Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Tian-Tian Zheng, Chun-Yu Lei, Jia-Feng Liao
{"title":"Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent","authors":"Tian-Tian Zheng, Chun-Yu Lei, Jia-Feng Liao","doi":"10.1515/anona-2023-0129","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type <jats:disp-formula id=\"j_anona-2023-0129_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mfenced open=\"(\" close=\")\">\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>∗</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mn>4</m:mn>\n <m:mi>π</m:mi>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n </m:mfrac>\n </m:mrow>\n </m:mfenced>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mi>μ</m:mi>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>u</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mi>p</m:mi>\n <m:mo>−</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mi>g</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>u</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mn>4</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n <m:mspace width=\"1em\" />\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:math>\n <jats:tex-math>-\\Delta u+\\left({u}^{2}\\ast \\frac{1}{| 4\\pi x| }\\right)u=\\mu f\\left(x){| u| }^{p-2}u+g\\left(x){| u| }^{4}u\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3},</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\mu \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mn>1</m:mn>\n <m:mo><</m:mo>\n <m:mi>p</m:mi>\n <m:mo><</m:mo>\n <m:mn>2</m:mn>\n </m:math>\n <jats:tex-math>1\\lt p\\lt 2</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mstyle displaystyle=\"false\">\n <m:mfrac>\n <m:mrow>\n <m:mn>6</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>6</m:mn>\n <m:mo>−</m:mo>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:mfrac>\n </m:mstyle>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>f\\in {L}^{\\tfrac{6}{6-p}}\\left({{\\mathbb{R}}}^{3})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo>∈</m:mo>\n <m:mi>C</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>+</m:mo>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>f,g\\in C\\left({{\\mathbb{R}}}^{3},{{\\mathbb{R}}}^{+})</jats:tex-math>\n </jats:altern","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0129","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type Δ u + u 2 1 4 π x u = μ f ( x ) u p 2 u + g ( x ) u 4 u in R 3 , -\Delta u+\left({u}^{2}\ast \frac{1}{| 4\pi x| }\right)u=\mu f\left(x){| u| }^{p-2}u+g\left(x){| u| }^{4}u\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}, where μ > 0 \mu \gt 0 , 1 < p < 2 1\lt p\lt 2 , f L 6 6 p ( R 3 ) f\in {L}^{\tfrac{6}{6-p}}\left({{\mathbb{R}}}^{3}) , and f , g C ( R 3 , R + ) f,g\in C\left({{\mathbb{R}}}^{3},{{\mathbb{R}}}^{+})
一类具有临界指数的凹凸薛定谔-泊松-斯莱特方程的多重正解
在本文中,我们将考虑静态薛定谔-泊松-斯莱特方程正解的多重性,该方程的类型为 - Δ u + u 2 ∗ 1 ∣ 4 π x ∣ u = μ f ( x ) ∣ u ∣ p - 2 u + g ( x ) ∣ u ∣ 4 u in R 3 , -\Delta u+\left({u}^{2}\ast \frac{1}{| 4\pi x| }\right)u=\mu f\left(x){| u| }^{p-2}u+g\left(x){| u| }^{4}u\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信