{"title":"Research on the construction and reform path of online and offline mixed English teaching model in the internet era","authors":"Ying Lan","doi":"10.1515/jisys-2023-0230","DOIUrl":null,"url":null,"abstract":"\n The Internet era resulted in the rise and advancement of MOOK, WeChat, and mobile networks, making it possible to expand English teaching methods. However, the English teaching industry has the problem of not valuing students’ personalized cognition, and the accuracy of teaching resource delivery is low. Therefore, the research uses the noise gate analysis method to design a cognitive diagnostic model for students and designs an English teaching resource recommendation model in view of a convolutional joint probability matrix (JPM) decomposition algorithm. The research results showed that the cognitive diagnostic model designed in the study had a higher accuracy. Compared to traditional algorithms, the overall recommendation effect of the English teaching resource recommendation model had an average improvement of 11.63% and compared to the JPM algorithm combined with cognitive diagnosis (CD), the overall recommendation effect value had an average improvement of 1.977%. When recommending complex teaching resources, the recommendation effect value had an average improvement of 11.54% compared to traditional algorithms, and the overall average improvement was 1.877% compared to the JPM algorithm combined with CD. In the experimental group, with the assistance of the research algorithm, students’ grades improved by an average of 2.38 points, which was significantly higher than the 0.89 points in the control group. The experiment showcases that the CD and recommendation model designed by the research has higher accuracy, can help improve the efficiency of teaching resource recommendation, reduces teaching costs, and has certain application value.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet era resulted in the rise and advancement of MOOK, WeChat, and mobile networks, making it possible to expand English teaching methods. However, the English teaching industry has the problem of not valuing students’ personalized cognition, and the accuracy of teaching resource delivery is low. Therefore, the research uses the noise gate analysis method to design a cognitive diagnostic model for students and designs an English teaching resource recommendation model in view of a convolutional joint probability matrix (JPM) decomposition algorithm. The research results showed that the cognitive diagnostic model designed in the study had a higher accuracy. Compared to traditional algorithms, the overall recommendation effect of the English teaching resource recommendation model had an average improvement of 11.63% and compared to the JPM algorithm combined with cognitive diagnosis (CD), the overall recommendation effect value had an average improvement of 1.977%. When recommending complex teaching resources, the recommendation effect value had an average improvement of 11.54% compared to traditional algorithms, and the overall average improvement was 1.877% compared to the JPM algorithm combined with CD. In the experimental group, with the assistance of the research algorithm, students’ grades improved by an average of 2.38 points, which was significantly higher than the 0.89 points in the control group. The experiment showcases that the CD and recommendation model designed by the research has higher accuracy, can help improve the efficiency of teaching resource recommendation, reduces teaching costs, and has certain application value.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.