求助PDF
{"title":"k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities","authors":"Xingyue He, Chenghua Gao, Jingjing Wang","doi":"10.1515/anona-2023-0136","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, our main aim is to investigate the existence of radial <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0136_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>k</m:mi>\n </m:math>\n <jats:tex-math>k</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-convex solutions for the following Dirichlet system with <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0136_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>k</m:mi>\n </m:math>\n <jats:tex-math>k</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-Hessian operators: <jats:disp-formula id=\"j_anona-2023-0136_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0136_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:msub>\n <m:mrow>\n <m:mi>S</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>k</m:mi>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>D</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:msub>\n <m:mrow>\n <m:mi>λ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n <m:msub>\n <m:mrow>\n <m:mi>ν</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:msub>\n <m:mrow>\n <m:mi>p</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n </m:mrow>\n </m:msup>\n <m:msup>\n <m:mrow>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:msub>\n <m:mrow>\n <m:mi>q</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n </m:mrow>\n </m:msup>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mi mathvariant=\"normal\">in</m:mi>\n <m:mspace width=\"1em\" />\n <m:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">ℬ</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>R</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:msub>\n <m:mrow>\n <m:mi>S</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>k</m:mi>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>D</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:msub>\n <m:mrow>\n <m:mi>λ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n ","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0136","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
具有 k-Hessian 算子和 Lane-Emden 型非线性的多参数 Dirichlet 系统的 k-convex 解法
在本文中,我们的主要目的是研究以下具有 k k 个黑森算子的狄利克特系统的径向 k k -凸解的存在性: S k ( D 2 u ) = λ 1 ν 1 ( ∣ x ∣ ) ( - u ) p 1 ( - v ) q
本文章由计算机程序翻译,如有差异,请以英文原文为准。