Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions

IF 3.2 1区 数学 Q1 MATHEMATICS
B. Ricceri
{"title":"Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions","authors":"B. Ricceri","doi":"10.1515/anona-2023-0104","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>⊂</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"bold\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>n</m:mi>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:tex-math>\\Omega \\subset {{\\bf{R}}}^{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>q</m:mi>\n <m:mo>∈</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">]</m:mo>\n <m:mrow>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mo stretchy=\"false\">[</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>q\\in ]0,1{[}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>α</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>∞</m:mi>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>\\alpha \\in {L}^{\\infty }\\left(\\Omega )</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, with <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>α</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\alpha \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>k</m:mi>\n <m:mo>∈</m:mo>\n <m:mi mathvariant=\"bold\">N</m:mi>\n </m:math>\n <jats:tex-math>k\\in {\\bf{N}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. Then, the problem <jats:disp-formula id=\"j_anona-2023-0104_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi>tan</m:mi>\n <m:mfenced open=\"(\" close=\")\">\n <m:mrow>\n <m:munder>\n <m:mrow>\n <m:mstyle displaystyle=\"true\">\n <m:mo>∫</m:mo>\n </m:mstyle>\n </m:mrow>\n <m:mrow>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mrow>\n </m:munder>\n <m:mo>∣</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi mathvariant=\"normal\">d</m:mi>\n <m:mi>x</m:mi>\n </m:mrow>\n </m:mfenced>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mi>α</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>q</m:mi>\n </m:mrow>\n </m:msup>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mi>u</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n ","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0104","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Ω R n \Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q ] 0 , 1 [ q\in ]0,1{[} , α L ( Ω ) \alpha \in {L}^{\infty }\left(\Omega ) , with α > 0 \alpha \gt 0 , and k N k\in {\bf{N}} . Then, the problem tan Ω u ( x ) 2 d x Δ u = α ( x ) u q in Ω u > 0 in
涉及不连续基尔霍夫函数的非局部问题的正解的存在性、唯一性、局部性和最小化特性
让 Ω ⊂ R n\Omega \子集 {{\bf{R}}}^{n} 是一个光滑有界域。本文将证明一个结果,下面是其副产品:设 q∈ ] 0 , 1 [ q\in ]0,1{[} , α ∈ L ∞ ( Ω ) \α > 0 \alpha \gt 0 , and k ∈ N k\in {bf{N}}. .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信