{"title":"Synthesis of aluminium (Al) and alumina (Al2O3)-based graded material by gravity casting","authors":"Puneet Singh, Krishna Kant Singh Mer, Satyendra Singh","doi":"10.1515/htmp-2022-0308","DOIUrl":null,"url":null,"abstract":"\n In the present work, aluminium alloy-based composites were developed for automobile applications. Aluminium-based functionally graded material (FGM) was developed by adding 2.5, 5 and 7.5 wt% of nanoparticles of alumina. The composites were made using gravity casting in an open hearth furnace with the surface temperature of FGM maintained at 750, 850 and 1,000°C. The microstructure of the samples was studied using scanning electron microscopy and particle distribution. The particle distribution was higher at the bottom in all compositions, which can be attributed to more solidification time. As the wt% of the Al2O3 increased, the volume fraction of particles also increased from the top surface to the bottom surface of the samples. After adding 7.5 wt% of Al2O3 and heating up to 1,000°C led to the grain refinement of the alloy. The increase in hardness from the top surface to the bottom surface of the sample verified the development of FGM. Due to increase in the solidification temperature, better reinforcement was observed in the developed FGM.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0308","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, aluminium alloy-based composites were developed for automobile applications. Aluminium-based functionally graded material (FGM) was developed by adding 2.5, 5 and 7.5 wt% of nanoparticles of alumina. The composites were made using gravity casting in an open hearth furnace with the surface temperature of FGM maintained at 750, 850 and 1,000°C. The microstructure of the samples was studied using scanning electron microscopy and particle distribution. The particle distribution was higher at the bottom in all compositions, which can be attributed to more solidification time. As the wt% of the Al2O3 increased, the volume fraction of particles also increased from the top surface to the bottom surface of the samples. After adding 7.5 wt% of Al2O3 and heating up to 1,000°C led to the grain refinement of the alloy. The increase in hardness from the top surface to the bottom surface of the sample verified the development of FGM. Due to increase in the solidification temperature, better reinforcement was observed in the developed FGM.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.