Thermal stability and crystallization kinetic of Se-Te-Ag glassy alloys and thick films for electronic devices

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
K. I. Hussain, A. Ashour, E. S. Yousef, E. R. Shaaban
{"title":"Thermal stability and crystallization kinetic of Se-Te-Ag glassy alloys and thick films for electronic devices","authors":"K. I. Hussain, A. Ashour, E. S. Yousef, E. R. Shaaban","doi":"10.15251/cl.2024.211.65","DOIUrl":null,"url":null,"abstract":"The present work has examined the thermal features of glassy chacogenide materials Se0.75-xTe0.25Agx (x = 0, 2, 4, 6, 8, 10 at %). The thermal stability of these compositions has been assessed under non-isothermal conditions using Differential Scanning Calorimetry (DSC), which has been used to find the glass transition temperature (Tg), the initial crystallization temperature (Tin), the temperature corresponding to the top of the crystallization rate (Tp), and the melting temperature (Tm). In addition, the kinetic parameter Kr(T) was given as an additional sign of thermal stability. Among these compositions, it was discovered that Se0.71Te0.25Ag0.04 had the best glass-forming ability and glass-thermal stability. The average coordination numbers of the considered samples have been discussed in relation to these results. Additionally, we measured the sheet resistivity, ρ, whose thickness is equivalent to 1000 nm at heating rate 5 K/min, in this work to study the crystallization kinetics of thick films of Se0.75-xTe0.25Agx (x = 0, 2, 4, 6, 8, 10 at %) in the temperature range of 300 to 625 K. This range was sufficient to draw attention to two substantial areas in the resistivity versus temperature curve, and the derivation of resistivity as a function of temperature established that the films under study only had one crystallization region.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2024.211.65","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present work has examined the thermal features of glassy chacogenide materials Se0.75-xTe0.25Agx (x = 0, 2, 4, 6, 8, 10 at %). The thermal stability of these compositions has been assessed under non-isothermal conditions using Differential Scanning Calorimetry (DSC), which has been used to find the glass transition temperature (Tg), the initial crystallization temperature (Tin), the temperature corresponding to the top of the crystallization rate (Tp), and the melting temperature (Tm). In addition, the kinetic parameter Kr(T) was given as an additional sign of thermal stability. Among these compositions, it was discovered that Se0.71Te0.25Ag0.04 had the best glass-forming ability and glass-thermal stability. The average coordination numbers of the considered samples have been discussed in relation to these results. Additionally, we measured the sheet resistivity, ρ, whose thickness is equivalent to 1000 nm at heating rate 5 K/min, in this work to study the crystallization kinetics of thick films of Se0.75-xTe0.25Agx (x = 0, 2, 4, 6, 8, 10 at %) in the temperature range of 300 to 625 K. This range was sufficient to draw attention to two substantial areas in the resistivity versus temperature curve, and the derivation of resistivity as a function of temperature established that the films under study only had one crystallization region.
用于电子设备的硒-碲-银玻璃合金和厚膜的热稳定性和结晶动力学
本研究考察了玻璃状碳化铬材料 Se0.75-xTe0.25Agx(x = 0、2、4、6、8、10%)的热特性。利用差示扫描量热法(DSC)评估了这些成分在非等温条件下的热稳定性,并通过该方法确定了玻璃化转变温度(Tg)、初始结晶温度(Tin)、结晶速率最高点对应的温度(Tp)和熔化温度(Tm)。此外,还给出了动力学参数 Kr(T),作为热稳定性的附加标志。研究发现,在这些成分中,Se0.71Te0.25Ag0.04 的玻璃形成能力和玻璃热稳定性最好。我们结合这些结果讨论了所考虑样品的平均配位数。此外,我们还测量了厚度相当于 1000 nm 的片状电阻率 ρ,加热速率为 5 K/分钟,以研究 Se0.75-xTe0.25Agx(x = 0、2、4、6、8、10 %)厚膜在 300 至 625 K 温度范围内的结晶动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chalcogenide Letters
Chalcogenide Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.80
自引率
20.00%
发文量
86
审稿时长
1 months
期刊介绍: Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and appears with twelve issues per year. The journal is open to letters, short communications and breakings news inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in structure, properties and applications, as well as those covering special properties in nano-structured chalcogenides are admitted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信