Variational–hemivariational system for contaminant convection–reaction–diffusion model of recovered fracturing fluid

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinxia Cen, Stanisław Migórski, Jen-Chih Yao, Shengda Zeng
{"title":"Variational–hemivariational system for contaminant convection–reaction–diffusion model of recovered fracturing fluid","authors":"Jinxia Cen, Stanisław Migórski, Jen-Chih Yao, Shengda Zeng","doi":"10.1515/anona-2023-0141","DOIUrl":null,"url":null,"abstract":"\n This work is devoted to study the convection–reaction–diffusion behavior of contaminant in the recovered fracturing fluid which flows in the wellbore from shale gas reservoir. First, we apply various constitutive laws for generalized non-Newtonian fluids, diffusion principles, and friction relations to formulate the recovered fracturing fluid model. The latter is a partial differential system composed of a nonlinear and nonsmooth stationary incompressible Navier-Stokes equation with a multivalued friction boundary condition, and a nonlinear convection–reaction–diffusion equation with mixed Neumann boundary conditions. Then, we provide the weak formulation of the fluid model which is a hemivariational inequality driven by a nonlinear variational equation. We establish existence of solutions to the recovered fracturing fluid model via a surjectivity theorem for multivalued operators combined with an alternative iterative method and elements of nonsmooth analysis.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0141","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work is devoted to study the convection–reaction–diffusion behavior of contaminant in the recovered fracturing fluid which flows in the wellbore from shale gas reservoir. First, we apply various constitutive laws for generalized non-Newtonian fluids, diffusion principles, and friction relations to formulate the recovered fracturing fluid model. The latter is a partial differential system composed of a nonlinear and nonsmooth stationary incompressible Navier-Stokes equation with a multivalued friction boundary condition, and a nonlinear convection–reaction–diffusion equation with mixed Neumann boundary conditions. Then, we provide the weak formulation of the fluid model which is a hemivariational inequality driven by a nonlinear variational equation. We establish existence of solutions to the recovered fracturing fluid model via a surjectivity theorem for multivalued operators combined with an alternative iterative method and elements of nonsmooth analysis.
回收压裂液污染物对流-反应-扩散模型的变量-半变量系统
这项工作致力于研究从页岩气储层流出的回收压裂液中污染物在井筒中的对流-反应-扩散行为。首先,我们应用广义非牛顿流体的各种构成定律、扩散原理和摩擦关系来建立回收压裂液模型。后者是一个偏微分系统,由带有多值摩擦边界条件的非线性非光滑静态不可压缩 Navier-Stokes 方程和带有混合 Neumann 边界条件的非线性对流-反应-扩散方程组成。然后,我们提供了流体模型的弱表述,即由非线性变分方程驱动的半变量不等式。我们通过多值算子的可射性定理,结合另一种迭代法和非平滑分析元素,确定了恢复压裂流体模型解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信