Ruixin Zhao, SaiHong Tang, E. Supeni, S. Rahim, Luxin Fan
{"title":"A Review of Object Detection in Traffic Scenes Based on Deep Learning","authors":"Ruixin Zhao, SaiHong Tang, E. Supeni, S. Rahim, Luxin Fan","doi":"10.2478/amns-2024-0322","DOIUrl":null,"url":null,"abstract":"\n At the current stage, the rapid Development of autonomous driving has made object detection in traffic scenarios a vital research task. Object detection is the most critical and challenging task in computer vision. Deep learning, with its powerful feature extraction capabilities, has found widespread applications in safety, military, and medical fields, and in recent years has expanded into the field of transportation, achieving significant breakthroughs. This survey is based on the theory of deep learning. It systematically summarizes the Development and current research status of object detection algorithms, and compare the characteristics, advantages and disadvantages of the two types of algorithms. With a focus on traffic signs, vehicle detection, and pedestrian detection, it summarizes the applications and research status of object detection in traffic scenarios, highlighting the strengths, limitations, and applicable scenarios of various methods. It introduces techniques for optimizing object detection algorithms, summarizes commonly used object detection datasets and traffic scene datasets, along with evaluation criteria, and performs comparative analysis of the performance of deep learning algorithms. Finally, it concludes the development trends of object detection algorithms in traffic scenarios, providing research directions for intelligent transportation and autonomous driving.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"55 16","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns-2024-0322","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
At the current stage, the rapid Development of autonomous driving has made object detection in traffic scenarios a vital research task. Object detection is the most critical and challenging task in computer vision. Deep learning, with its powerful feature extraction capabilities, has found widespread applications in safety, military, and medical fields, and in recent years has expanded into the field of transportation, achieving significant breakthroughs. This survey is based on the theory of deep learning. It systematically summarizes the Development and current research status of object detection algorithms, and compare the characteristics, advantages and disadvantages of the two types of algorithms. With a focus on traffic signs, vehicle detection, and pedestrian detection, it summarizes the applications and research status of object detection in traffic scenarios, highlighting the strengths, limitations, and applicable scenarios of various methods. It introduces techniques for optimizing object detection algorithms, summarizes commonly used object detection datasets and traffic scene datasets, along with evaluation criteria, and performs comparative analysis of the performance of deep learning algorithms. Finally, it concludes the development trends of object detection algorithms in traffic scenarios, providing research directions for intelligent transportation and autonomous driving.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico