{"title":"Electronic Structure of Li, Be, and Al Ultrathin Coverings on the Si(100) Surface","authors":"V. Zavodinsky, O. Gorkusha","doi":"10.13005/ojps08.02.06","DOIUrl":null,"url":null,"abstract":"Within the framework of density functional theory and the pseudopotential method, calculations of the density of electronic states of the system “Si(100) substrate plus disordered two-dimensional metal layers (Li, Be or Al)” with a thickness of one to four single-atomic layers were carried out during growth at 0°K.\n\nIt is shown that the electronic structure of the first single-atomic layers of these metals on Si(100) has band gaps. The maximum band gap was found in the Be-Si system (1.03 eV for a single-atomic layer). In this system, the band gap disappears when four single-atomic layers are deposited. In the Li-Si system (0.98 eV for a single-atomic layer) it disappears for two single-atomic layers. In the Al-Si–system (0.50 eV with four single-atomic layers), the band gap disappears for three single-atomic layers. This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.","PeriodicalId":299805,"journal":{"name":"Oriental Journal of Physical Sciences","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojps08.02.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Within the framework of density functional theory and the pseudopotential method, calculations of the density of electronic states of the system “Si(100) substrate plus disordered two-dimensional metal layers (Li, Be or Al)” with a thickness of one to four single-atomic layers were carried out during growth at 0°K.
It is shown that the electronic structure of the first single-atomic layers of these metals on Si(100) has band gaps. The maximum band gap was found in the Be-Si system (1.03 eV for a single-atomic layer). In this system, the band gap disappears when four single-atomic layers are deposited. In the Li-Si system (0.98 eV for a single-atomic layer) it disappears for two single-atomic layers. In the Al-Si–system (0.50 eV with four single-atomic layers), the band gap disappears for three single-atomic layers. This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.