Variation of the chemical and biochemical responses to salinity during germination and early growth of seedlings of two populations of Agave durangensis Gentry
Génesis Gallegos-Hernández, N. Almaraz-Abarca, E. A. Delgado-Alvarado, J. A. Ávila-Reyes, R. Torres-Ricario
{"title":"Variation of the chemical and biochemical responses to salinity during germination and early growth of seedlings of two populations of Agave durangensis Gentry","authors":"Génesis Gallegos-Hernández, N. Almaraz-Abarca, E. A. Delgado-Alvarado, J. A. Ávila-Reyes, R. Torres-Ricario","doi":"10.14719/pst.2963","DOIUrl":null,"url":null,"abstract":"Agave durangensis (Asparagaceae) sustains a mescal industry in Mexico. The main reproductive strategy of the species is by seeds. The increased demand for agave-based beverages encourages producers to seek new cultivation areas. However, more than half of the territory of the country includes arid and semiarid zones, which are highly affected by salinity. The aim of the current study was to determine if salinity triggers different seed germination potential and variable biochemical and chemical responses in seedlings of two populations of A. durangensis, that might confer different tolerance to salinity. Seeds from each population were irrigated with four salinity treatments. Germination potential, as well as growth parameters and biochemical and chemical attributes of seedlings, were determined. Although with reduced germinability and germination speed, seeds of the two populations were able to germinate even under the strongest NaCl concentration (100 mM) evaluated. Effects in the growth parameters were registered; however, the seedlings of both populations survived throughout the experiments, increasing chlorophyll content and cell viability in most saline treatments. The enzymatic defense mechanism and the accumulation of proline were activated in a salt-dependent manner, which did not occur with the phenolic compounds; however, monomeric anthocyanin accumulation was outstanding under the two strongest NaCl concentrations evaluated. Important interpopulation differences were registered in each type of response, which were differently regulated under variable NaCl concentrations, some of them being more important than others under a particular saline condition. Seeds from the population Durango were more sensitive to salinity.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Agave durangensis (Asparagaceae) sustains a mescal industry in Mexico. The main reproductive strategy of the species is by seeds. The increased demand for agave-based beverages encourages producers to seek new cultivation areas. However, more than half of the territory of the country includes arid and semiarid zones, which are highly affected by salinity. The aim of the current study was to determine if salinity triggers different seed germination potential and variable biochemical and chemical responses in seedlings of two populations of A. durangensis, that might confer different tolerance to salinity. Seeds from each population were irrigated with four salinity treatments. Germination potential, as well as growth parameters and biochemical and chemical attributes of seedlings, were determined. Although with reduced germinability and germination speed, seeds of the two populations were able to germinate even under the strongest NaCl concentration (100 mM) evaluated. Effects in the growth parameters were registered; however, the seedlings of both populations survived throughout the experiments, increasing chlorophyll content and cell viability in most saline treatments. The enzymatic defense mechanism and the accumulation of proline were activated in a salt-dependent manner, which did not occur with the phenolic compounds; however, monomeric anthocyanin accumulation was outstanding under the two strongest NaCl concentrations evaluated. Important interpopulation differences were registered in each type of response, which were differently regulated under variable NaCl concentrations, some of them being more important than others under a particular saline condition. Seeds from the population Durango were more sensitive to salinity.