Expected Classification Accuracy for Categorical Growth Models

IF 2.7 4区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Daniel Murphy, Sarah Quesen, Matthew Brunetti, Quintin Love
{"title":"Expected Classification Accuracy for Categorical Growth Models","authors":"Daniel Murphy,&nbsp;Sarah Quesen,&nbsp;Matthew Brunetti,&nbsp;Quintin Love","doi":"10.1111/emip.12599","DOIUrl":null,"url":null,"abstract":"<p>Categorical growth models describe examinee growth in terms of performance-level category transitions, which implies that some percentage of examinees will be misclassified. This paper introduces a new procedure for estimating the classification accuracy of categorical growth models, based on Rudner's classification accuracy index for item response theory–based assessments. Results of a simulation study are presented to provide evidence for the accuracy and validity of the approach. Also, an empirical example is presented to demonstrate the approach using data from the Indiana Student Performance Readiness and Observation of Understanding Tool growth model, which classifies examinees into growth categories used by the Office of Special Education Programs to monitor the progress of preschool children who receive special education services.</p>","PeriodicalId":47345,"journal":{"name":"Educational Measurement-Issues and Practice","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Measurement-Issues and Practice","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emip.12599","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Categorical growth models describe examinee growth in terms of performance-level category transitions, which implies that some percentage of examinees will be misclassified. This paper introduces a new procedure for estimating the classification accuracy of categorical growth models, based on Rudner's classification accuracy index for item response theory–based assessments. Results of a simulation study are presented to provide evidence for the accuracy and validity of the approach. Also, an empirical example is presented to demonstrate the approach using data from the Indiana Student Performance Readiness and Observation of Understanding Tool growth model, which classifies examinees into growth categories used by the Office of Special Education Programs to monitor the progress of preschool children who receive special education services.

分类增长模型的预期分类精度
分类增长模型以成绩水平的类别转换来描述考生的增长,这意味着一定比例的考生会被错误分类。本文介绍了一种估算分类增长模型分类准确性的新程序,该程序基于鲁德纳的分类准确性指数,适用于基于项目反应理论的评估。本文介绍了一项模拟研究的结果,以证明该方法的准确性和有效性。此外,还介绍了一个实证范例,使用印第安纳州学生成绩准备和理解能力观察工具增长模型的数据来演示该方法,该模型将受试者分为不同的增长类别,供特殊教育项目办公室用于监测接受特殊教育服务的学龄前儿童的进展情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
15.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信