On the Hughes conjecture for some finite p-groups

IF 1 3区 数学 Q1 MATHEMATICS
Mandeep Singh, Rohit Garg
{"title":"On the Hughes conjecture for some finite p-groups","authors":"Mandeep Singh,&nbsp;Rohit Garg","doi":"10.1007/s10231-023-01421-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a group, <i>p</i> a prime and <span>\\(H_p(G)\\)</span> the subgroup of <i>G</i> generated by the elements of order different from <i>p</i>. In 1957, D. R. Hughes conjectured that either <span>\\(H_p(G)=1\\)</span>, <span>\\(H_p(G)=G\\)</span>, or <span>\\([G:H_p(G)]=p\\)</span>. In this paper, we prove this conjecture for finite extraspecial <i>p</i>-groups (where <span>\\(p&gt;2\\)</span>), finite minimal non-abelian <i>p</i>-groups and finite non-abelian <i>p</i>-groups having cyclic maximal subgroup. Moreover, we give some sufficient conditions for 2-generated finite non-abelian <i>p</i>-groups which guarantee the existence of the Hughes conjecture.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01421-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a group, p a prime and \(H_p(G)\) the subgroup of G generated by the elements of order different from p. In 1957, D. R. Hughes conjectured that either \(H_p(G)=1\), \(H_p(G)=G\), or \([G:H_p(G)]=p\). In this paper, we prove this conjecture for finite extraspecial p-groups (where \(p>2\)), finite minimal non-abelian p-groups and finite non-abelian p-groups having cyclic maximal subgroup. Moreover, we give some sufficient conditions for 2-generated finite non-abelian p-groups which guarantee the existence of the Hughes conjecture.

关于某些有限 p 群的休斯猜想
让 G 是一个群,p 是一个素数,\(H_p(G)\) 是由与 p 不同阶的元素产生的 G 的子群。1957 年,D. R. Hughes 猜想,要么 \(H_p(G)=1\),\(H_p(G)=G\),要么 \([G:H_p(G)]=p\)。在本文中,我们证明了有限外特殊 p 群(其中 \(p>2\))、有限最小非标注 p 群和具有循环最大子群的有限非标注 p 群的这一猜想。此外,我们还给出了保证休斯猜想存在的 2 代有限非阿贝尔 p 群的一些充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信