{"title":"Aldolase: A Desirable Biocatalytic Candidate for Biotechnological Applications","authors":"Moloko G. Mathipa-Mdakane, Lucia Steenkamp","doi":"10.3390/catal14020114","DOIUrl":null,"url":null,"abstract":"The utilization of chemical reactions is crucial in various industrial processes, including pharmaceutical synthesis and the production of fine chemicals. However, traditional chemical catalysts often lack selectivity, require harsh reaction conditions, and lead to the generation of hazardous waste. In response, biocatalysis has emerged as a promising approach within green chemistry, employing enzymes as catalysts. Among these enzymes, aldolases have gained attention for their efficiency and selectivity in catalyzing C-C bond formation, making them versatile biocatalysts for diverse biotechnological applications. Despite their potential, challenges exist in aldolase-based biocatalysis, such as limited availability of natural aldolases with desired catalytic properties. This review explores strategies to address these challenges, including immobilization techniques, recombinant expression, and protein engineering approaches. By providing valuable insights into the suitability of aldolases as biocatalysts, this review lays the groundwork for future research and the exploration of innovative strategies to fully harness the potential of aldolases in biotechnology. This comprehensive review aims to attract readers by providing a comprehensive overview of aldolase-based biocatalysis, addressing challenges, and proposing avenues for future research and development.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14020114","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of chemical reactions is crucial in various industrial processes, including pharmaceutical synthesis and the production of fine chemicals. However, traditional chemical catalysts often lack selectivity, require harsh reaction conditions, and lead to the generation of hazardous waste. In response, biocatalysis has emerged as a promising approach within green chemistry, employing enzymes as catalysts. Among these enzymes, aldolases have gained attention for their efficiency and selectivity in catalyzing C-C bond formation, making them versatile biocatalysts for diverse biotechnological applications. Despite their potential, challenges exist in aldolase-based biocatalysis, such as limited availability of natural aldolases with desired catalytic properties. This review explores strategies to address these challenges, including immobilization techniques, recombinant expression, and protein engineering approaches. By providing valuable insights into the suitability of aldolases as biocatalysts, this review lays the groundwork for future research and the exploration of innovative strategies to fully harness the potential of aldolases in biotechnology. This comprehensive review aims to attract readers by providing a comprehensive overview of aldolase-based biocatalysis, addressing challenges, and proposing avenues for future research and development.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.