{"title":"Mountain Streambed Roughness and Flood Extent Estimation from Imagery Using the Segment Anything Model (SAM)","authors":"B. Baziak, Marek Bodziony, Robert Szczepanek","doi":"10.3390/hydrology11020017","DOIUrl":null,"url":null,"abstract":"Machine learning models facilitate the search for non-linear relationships when modeling hydrological processes, but they are equally effective for automation at the data preparation stage. The tasks for which automation was analyzed consisted of estimating changes in the roughness coefficient of a mountain streambed and the extent of floods from images. The Segment Anything Model (SAM) developed in 2023 by Meta was used for this purpose. Images from many years from the Wielka Puszcza mountain stream located in the Polish Carpathians were used as the only input data. The model was not additionally trained for the described tasks. The SAM can be run in several modes, but the two most appropriate were used in this study. The first one is available in the form of a web application, while the second one is available in the form of a Jupyter notebook run in the Google Colab environment. Both methods do not require specialized knowledge and can be used by virtually any hydrologist. In the roughness estimation task, the average Intersection over Union (IoU) ranges from 0.55 for grass to 0.82 for shrubs/trees. Ultimately, it was possible to estimate the roughness coefficient of the mountain streambed between 0.027 and 0.059 based solely on image data. In the task of estimation of the flood extent, when selecting appropriate images, one can expect IoU at the level of at least 0.94, which seems to be an excellent result considering that the SAM is a general-purpose segmentation model. It can therefore be concluded that the SAM can be a useful tool for a hydrologist.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning models facilitate the search for non-linear relationships when modeling hydrological processes, but they are equally effective for automation at the data preparation stage. The tasks for which automation was analyzed consisted of estimating changes in the roughness coefficient of a mountain streambed and the extent of floods from images. The Segment Anything Model (SAM) developed in 2023 by Meta was used for this purpose. Images from many years from the Wielka Puszcza mountain stream located in the Polish Carpathians were used as the only input data. The model was not additionally trained for the described tasks. The SAM can be run in several modes, but the two most appropriate were used in this study. The first one is available in the form of a web application, while the second one is available in the form of a Jupyter notebook run in the Google Colab environment. Both methods do not require specialized knowledge and can be used by virtually any hydrologist. In the roughness estimation task, the average Intersection over Union (IoU) ranges from 0.55 for grass to 0.82 for shrubs/trees. Ultimately, it was possible to estimate the roughness coefficient of the mountain streambed between 0.027 and 0.059 based solely on image data. In the task of estimation of the flood extent, when selecting appropriate images, one can expect IoU at the level of at least 0.94, which seems to be an excellent result considering that the SAM is a general-purpose segmentation model. It can therefore be concluded that the SAM can be a useful tool for a hydrologist.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.