Shengchang Zhang , Huaijuan Zhou , Yao Zhou , Jinhua Li , Jiadong Zhou
{"title":"Tailoring bone microenvironment with 2D layered materials","authors":"Shengchang Zhang , Huaijuan Zhou , Yao Zhou , Jinhua Li , Jiadong Zhou","doi":"10.1016/j.fmre.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>The bone repair niche, including the physiological and pathological microenvironment, is a complex system that interferes with various cellular/noncellular activities. Thus, a rational perspective of designing tunable biomaterials with the modulation of the bone microenvironment is in high demand in pre/clinical practice for the management of refractory bone defects in combination with severe bone diseases. Two-dimensional (2D) layered materials are emerging biomaterials for bone microenvironment engineering because of their inherent biocompatibility, osteo-inductivity, osteo-conductivity, optical properties, enzyme mimetics, and mechanical properties. In this study, we focus on the latest advances in developing 2D layered materials in bone regeneration, bone cancer therapies, bone-related infections eradication, and articular cartilage repair. In addition, the specific action mechanisms and design regimens of 2D-layered material-based nanoplatforms are clarified. Finally, the current challenges are discussed, and the key inspirations for further broadening the pre/clinical applications of 2D layered materials in orthopedic disorder therapy are proposed.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 5","pages":"Pages 2209-2221"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824000918","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
The bone repair niche, including the physiological and pathological microenvironment, is a complex system that interferes with various cellular/noncellular activities. Thus, a rational perspective of designing tunable biomaterials with the modulation of the bone microenvironment is in high demand in pre/clinical practice for the management of refractory bone defects in combination with severe bone diseases. Two-dimensional (2D) layered materials are emerging biomaterials for bone microenvironment engineering because of their inherent biocompatibility, osteo-inductivity, osteo-conductivity, optical properties, enzyme mimetics, and mechanical properties. In this study, we focus on the latest advances in developing 2D layered materials in bone regeneration, bone cancer therapies, bone-related infections eradication, and articular cartilage repair. In addition, the specific action mechanisms and design regimens of 2D-layered material-based nanoplatforms are clarified. Finally, the current challenges are discussed, and the key inspirations for further broadening the pre/clinical applications of 2D layered materials in orthopedic disorder therapy are proposed.