Optimal Asymmetric Quantum Codes from the Euclidean Sums of Linear Codes

Q3 Multidisciplinary
Peng Xu, Xiusheng Liu
{"title":"Optimal Asymmetric Quantum Codes from the Euclidean Sums of Linear Codes","authors":"Peng Xu, Xiusheng Liu","doi":"10.1051/wujns/2024291045","DOIUrl":null,"url":null,"abstract":"In this paper, we first give the definition of the Euclidean sums of linear codes, and prove that the Euclidean sums of linear codes are Euclidean dual-containing. Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes, and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields. Moreover, these optimal asymmetric quantum error-correcting codes constructed in this paper are different from the ones in the literature.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":"486 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2024291045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first give the definition of the Euclidean sums of linear codes, and prove that the Euclidean sums of linear codes are Euclidean dual-containing. Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes, and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields. Moreover, these optimal asymmetric quantum error-correcting codes constructed in this paper are different from the ones in the literature.
从线性编码的欧氏和看最佳非对称量子编码
本文首先给出了线性编码的欧氏和的定义,并证明了线性编码的欧氏和是欧氏对偶包含的。然后,我们基于里德-所罗门码的欧氏和构造了两类新的最优非对称量子纠错码,并基于有限域上范德蒙德矩阵生成的线性码的欧氏和构造了两类新的最优非对称量子纠错码。此外,本文构建的这些最优非对称量子纠错码与文献中的编码不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信