{"title":"A New Dynamic and Vertical Photovoltaic Integrated Building Envelope for High-Rise Glaze-Facade Buildings","authors":"","doi":"10.1016/j.eng.2024.01.014","DOIUrl":null,"url":null,"abstract":"<div><p>Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics. Inherent conflicts exist among architectural aesthetics, building energy consumption, and solar energy harvesting for glazed facades. In this study, we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope (dvPVBE) that offers extraordinary flexibility with weather-responsive slat angles and blind positions, superior architectural aesthetics, and notable energy-saving potential. Three hierarchical control strategies were proposed for different scenarios of the dvPVBE: power generation priority (PGP), natural daylight priority (NDP), and energy-saving priority (ESP). Moreover, the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE. An office room integrated with a dvPVBE was modeled using EnergyPlus. The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies. The results indicate that the application of dvPVBEs in Beijing can provide up to 131% of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226% compared with static photovoltaic (PV) blinds. The concept of this novel dvPVBE offers a viable approach by which the thermal load, daylight penetration, and energy generation can be effectively regulated.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209580992400064X/pdfft?md5=8d5c784f163f4cb1e5eb3668dd620433&pid=1-s2.0-S209580992400064X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209580992400064X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics. Inherent conflicts exist among architectural aesthetics, building energy consumption, and solar energy harvesting for glazed facades. In this study, we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope (dvPVBE) that offers extraordinary flexibility with weather-responsive slat angles and blind positions, superior architectural aesthetics, and notable energy-saving potential. Three hierarchical control strategies were proposed for different scenarios of the dvPVBE: power generation priority (PGP), natural daylight priority (NDP), and energy-saving priority (ESP). Moreover, the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE. An office room integrated with a dvPVBE was modeled using EnergyPlus. The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies. The results indicate that the application of dvPVBEs in Beijing can provide up to 131% of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226% compared with static photovoltaic (PV) blinds. The concept of this novel dvPVBE offers a viable approach by which the thermal load, daylight penetration, and energy generation can be effectively regulated.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.