An Analytical Model of Material Deformation During Friction Welding of Alloy 718

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Caleb Brown, Tracy W. NELSON, Carl Sorenson
{"title":"An Analytical Model of Material Deformation During Friction Welding of Alloy 718","authors":"Caleb Brown, Tracy W. NELSON, Carl Sorenson","doi":"10.29391/2024.103.014","DOIUrl":null,"url":null,"abstract":"A new model of the material flow in rotary friction welding of tubes is proposed. The material flow proposed is based on 3D microcomputer tomography scans of welds performed with tungsten tracers. The tracers indicate a bifurcation of flow into two deformation paths. The material in Path 1 interacts with the weld interface and exhibits large azimuthal flow. The material in Path 2 transitions from axial to primarily radial flow with little or no azimuthal flow. The directional transition in this path is compared to orthogonal machining and equal channel angular pressing. The process to estimate the variables needed to calculate strain and strain rates using the equations from orthogonal machining and equal channel angular pressing is defined. Strain and strain rate in Path 2 are dependent upon feed rate and upset and decrease throughout the welding process. The strain rate is higher than previously reported for rotary friction welding as a result of the deformation model proposed.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2024.103.014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A new model of the material flow in rotary friction welding of tubes is proposed. The material flow proposed is based on 3D microcomputer tomography scans of welds performed with tungsten tracers. The tracers indicate a bifurcation of flow into two deformation paths. The material in Path 1 interacts with the weld interface and exhibits large azimuthal flow. The material in Path 2 transitions from axial to primarily radial flow with little or no azimuthal flow. The directional transition in this path is compared to orthogonal machining and equal channel angular pressing. The process to estimate the variables needed to calculate strain and strain rates using the equations from orthogonal machining and equal channel angular pressing is defined. Strain and strain rate in Path 2 are dependent upon feed rate and upset and decrease throughout the welding process. The strain rate is higher than previously reported for rotary friction welding as a result of the deformation model proposed.
合金 718 摩擦焊接过程中材料变形的分析模型
本文提出了管材旋转摩擦焊接中材料流动的新模型。所提出的材料流动模型是基于使用钨丝跟踪器对焊缝进行的三维微计算机断层扫描。示踪剂表明,材料流动分为两条变形路径。路径 1 中的材料与焊接界面相互作用,表现出较大的方位流动。路径 2 中的材料从轴向流动过渡到主要是径向流动,几乎没有方位流动。该路径中的方向过渡与正交加工和等沟道角压进行了比较。定义了使用正交加工和等沟道角压方程计算应变和应变率所需变量的估算过程。路径 2 中的应变和应变率取决于进给速度和镦粗,并在整个焊接过程中逐渐减小。由于采用了所提出的变形模型,因此应变率高于之前报告的旋转摩擦焊接应变率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信