Hang Pan , Jian-Ping Tang , Liang Cheng , Man-Chun Li
{"title":"Ensemble projections of climate and streamflow in a typical basin of semi-arid steppes in Mongolian Plateau of 2021–2100","authors":"Hang Pan , Jian-Ping Tang , Liang Cheng , Man-Chun Li","doi":"10.1016/j.accre.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>The Kherlen River is the main water source for Hulun Lake, the largest lake in northern China. Due to reduced inflow from the Kherlen River, Hulun Lake experienced rapid shrinkage at the beginning of the 21st century, posing a serious threat to the ecological security of northern China. However, there is still a significant lack of projections regarding future climate change and its hydrological response in the Kherlen River basin. This study analyzed the projected climate and streamflow changes in the Kherlen River basin, a vital yet vulnerable international semi-arid steppes type basin. A combination of multi-model ensemble projection techniques, and the soil and water assessment tool (SWAT) model was employed to examine the spatio‒temporal changes in precipitation, temperature, streamflow, and the associated uncertainties in the basin. The temperature (an increase of 1.84–6.42 °C) and the precipitation (an increase of 15.0–46.0 mm) of Kherlen River basin are projected to increase by 2100, leading to a rise in streamflow (1.08–4.78 m<sup>3</sup> s<sup>−1</sup>). The upstream of the Kherlen River exhibits remarkable increasing trends in precipitation, which has a dominant influence on streamflow of Kherlen River. Noteworthy increases in streamflow are observed in April, August, September, and October compared to the reference period (1971–2000). These findings suggest a partial alleviation of water scarcity in the Kherlen River, but also an increased likelihood of hydrological extreme events. The projected temperature increase in the Kherlen River basin exhibits the smallest uncertainty, while more pronounced uncertainties are found in precipitation and streamflow. The spread among the results of CMIP6 models is greater than that of CMIP5 models, with lower signal-to-noise ratio (SNR) values for temperature, precipitation, and streamflow.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 2","pages":"Pages 230-243"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000297/pdfft?md5=e0b17b950c6f39d871ead23fddb6053e&pid=1-s2.0-S1674927824000297-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824000297","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Kherlen River is the main water source for Hulun Lake, the largest lake in northern China. Due to reduced inflow from the Kherlen River, Hulun Lake experienced rapid shrinkage at the beginning of the 21st century, posing a serious threat to the ecological security of northern China. However, there is still a significant lack of projections regarding future climate change and its hydrological response in the Kherlen River basin. This study analyzed the projected climate and streamflow changes in the Kherlen River basin, a vital yet vulnerable international semi-arid steppes type basin. A combination of multi-model ensemble projection techniques, and the soil and water assessment tool (SWAT) model was employed to examine the spatio‒temporal changes in precipitation, temperature, streamflow, and the associated uncertainties in the basin. The temperature (an increase of 1.84–6.42 °C) and the precipitation (an increase of 15.0–46.0 mm) of Kherlen River basin are projected to increase by 2100, leading to a rise in streamflow (1.08–4.78 m3 s−1). The upstream of the Kherlen River exhibits remarkable increasing trends in precipitation, which has a dominant influence on streamflow of Kherlen River. Noteworthy increases in streamflow are observed in April, August, September, and October compared to the reference period (1971–2000). These findings suggest a partial alleviation of water scarcity in the Kherlen River, but also an increased likelihood of hydrological extreme events. The projected temperature increase in the Kherlen River basin exhibits the smallest uncertainty, while more pronounced uncertainties are found in precipitation and streamflow. The spread among the results of CMIP6 models is greater than that of CMIP5 models, with lower signal-to-noise ratio (SNR) values for temperature, precipitation, and streamflow.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.