Erik Štrumbelj, A. Bouchard-Côté, J. Corander, Andrew Gelman, H. Rue, Lawrence Murray, Henri Pesonen, M. Plummer, A. Vehtari
{"title":"Past, Present and Future of Software for Bayesian Inference","authors":"Erik Štrumbelj, A. Bouchard-Côté, J. Corander, Andrew Gelman, H. Rue, Lawrence Murray, Henri Pesonen, M. Plummer, A. Vehtari","doi":"10.1214/23-sts907","DOIUrl":null,"url":null,"abstract":". Software tools for Bayesian inference have undergone rapid evolution in the past three decades, following popularisation of the first generation MCMC-sampler implementations. More recently, exponential growth in the number of users has been stimulated both by the active development of new packages by the machine learning community and popularity of specialist software for particular applications. This review aims to summarize the most popular software and provide a useful map for a reader to navigate the world of Bayesian computation. We anticipate a vigorous continued development of algorithms and corresponding software in multiple research fields, such as probabilistic programming, likelihood-free inference, and Bayesian neural networks, which will further broaden the possibilities for employing the Bayesian paradigm in exciting applications.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"362 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-sts907","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
. Software tools for Bayesian inference have undergone rapid evolution in the past three decades, following popularisation of the first generation MCMC-sampler implementations. More recently, exponential growth in the number of users has been stimulated both by the active development of new packages by the machine learning community and popularity of specialist software for particular applications. This review aims to summarize the most popular software and provide a useful map for a reader to navigate the world of Bayesian computation. We anticipate a vigorous continued development of algorithms and corresponding software in multiple research fields, such as probabilistic programming, likelihood-free inference, and Bayesian neural networks, which will further broaden the possibilities for employing the Bayesian paradigm in exciting applications.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico