Paul Scalise, Matthew Boeding, M. Hempel, H. Sharif, Joseph Delloiacovo, John Reed
{"title":"A Systematic Survey on 5G and 6G Security Considerations, Challenges, Trends, and Research Areas","authors":"Paul Scalise, Matthew Boeding, M. Hempel, H. Sharif, Joseph Delloiacovo, John Reed","doi":"10.3390/fi16030067","DOIUrl":null,"url":null,"abstract":"With the rapid rollout and growing adoption of 3GPP 5thGeneration (5G) cellular services, including in critical infrastructure sectors, it is important to review security mechanisms, risks, and potential vulnerabilities within this vital technology. Numerous security capabilities need to work together to ensure and maintain a sufficiently secure 5G environment that places user privacy and security at the forefront. Confidentiality, integrity, and availability are all pillars of a privacy and security framework that define major aspects of 5G operations. They are incorporated and considered in the design of the 5G standard by the 3rd Generation Partnership Project (3GPP) with the goal of providing a highly reliable network operation for all. Through a comprehensive review, we aim to analyze the ever-evolving landscape of 5G, including any potential attack vectors and proposed measures to mitigate or prevent these threats. This paper presents a comprehensive survey of the state-of-the-art research that has been conducted in recent years regarding 5G systems, focusing on the main components in a systematic approach: the Core Network (CN), Radio Access Network (RAN), and User Equipment (UE). Additionally, we investigate the utilization of 5G in time-dependent, ultra-confidential, and private communications built around a Zero Trust approach. In today’s world, where everything is more connected than ever, Zero Trust policies and architectures can be highly valuable in operations containing sensitive data. Realizing a Zero Trust Architecture entails continuous verification of all devices, users, and requests, regardless of their location within the network, and grants permission only to authorized entities. Finally, developments and proposed methods of new 5G and future 6G security approaches, such as Blockchain technology, post-quantum cryptography (PQC), and Artificial Intelligence (AI) schemes, are also discussed to understand better the full landscape of current and future research within this telecommunications domain.","PeriodicalId":509567,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16030067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid rollout and growing adoption of 3GPP 5thGeneration (5G) cellular services, including in critical infrastructure sectors, it is important to review security mechanisms, risks, and potential vulnerabilities within this vital technology. Numerous security capabilities need to work together to ensure and maintain a sufficiently secure 5G environment that places user privacy and security at the forefront. Confidentiality, integrity, and availability are all pillars of a privacy and security framework that define major aspects of 5G operations. They are incorporated and considered in the design of the 5G standard by the 3rd Generation Partnership Project (3GPP) with the goal of providing a highly reliable network operation for all. Through a comprehensive review, we aim to analyze the ever-evolving landscape of 5G, including any potential attack vectors and proposed measures to mitigate or prevent these threats. This paper presents a comprehensive survey of the state-of-the-art research that has been conducted in recent years regarding 5G systems, focusing on the main components in a systematic approach: the Core Network (CN), Radio Access Network (RAN), and User Equipment (UE). Additionally, we investigate the utilization of 5G in time-dependent, ultra-confidential, and private communications built around a Zero Trust approach. In today’s world, where everything is more connected than ever, Zero Trust policies and architectures can be highly valuable in operations containing sensitive data. Realizing a Zero Trust Architecture entails continuous verification of all devices, users, and requests, regardless of their location within the network, and grants permission only to authorized entities. Finally, developments and proposed methods of new 5G and future 6G security approaches, such as Blockchain technology, post-quantum cryptography (PQC), and Artificial Intelligence (AI) schemes, are also discussed to understand better the full landscape of current and future research within this telecommunications domain.