An iterative spectral algorithm for digraph clustering

IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
James Martin, Tim Rogers, Luca Zanetti
{"title":"An iterative spectral algorithm for digraph clustering","authors":"James Martin, Tim Rogers, Luca Zanetti","doi":"10.1093/comnet/cnae016","DOIUrl":null,"url":null,"abstract":"\n Graph clustering is a fundamental technique in data analysis with applications in many different fields. While there is a large body of work on clustering undirected graphs, the problem of clustering directed graphs is much less understood. The analysis is more complex in the directed graph case for two reasons: the clustering must preserve directional information in the relationships between clusters, and directed graphs have non-Hermitian adjacency matrices whose properties are less conducive to traditional spectral methods. Here, we consider the problem of partitioning the vertex set of a directed graph into k≥2 clusters so that edges between different clusters tend to follow the same direction. We present an iterative algorithm based on spectral methods applied to new Hermitian representations of directed graphs. Our algorithm performs favourably against the state-of-the-art, both on synthetic and real-world data sets. Additionally, it can identify a ‘meta-graph’ of k vertices that represents the higher-order relations between clusters in a directed graph. We showcase this capability on data sets about food webs, biological neural networks, and the online card game Hearthstone.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnae016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Graph clustering is a fundamental technique in data analysis with applications in many different fields. While there is a large body of work on clustering undirected graphs, the problem of clustering directed graphs is much less understood. The analysis is more complex in the directed graph case for two reasons: the clustering must preserve directional information in the relationships between clusters, and directed graphs have non-Hermitian adjacency matrices whose properties are less conducive to traditional spectral methods. Here, we consider the problem of partitioning the vertex set of a directed graph into k≥2 clusters so that edges between different clusters tend to follow the same direction. We present an iterative algorithm based on spectral methods applied to new Hermitian representations of directed graphs. Our algorithm performs favourably against the state-of-the-art, both on synthetic and real-world data sets. Additionally, it can identify a ‘meta-graph’ of k vertices that represents the higher-order relations between clusters in a directed graph. We showcase this capability on data sets about food webs, biological neural networks, and the online card game Hearthstone.
数图聚类的迭代光谱算法
图聚类是数据分析的一项基本技术,在许多不同领域都有应用。无向图的聚类研究成果很多,但有向图的聚类问题却鲜为人知。有向图的分析更为复杂,原因有二:聚类必须保留聚类之间关系的方向信息,而且有向图具有非ermitian邻接矩阵,其属性不利于传统的谱方法。在这里,我们考虑的问题是将有向图的顶点集划分为 k≥2 个簇,从而使不同簇之间的边趋于相同的方向。我们提出了一种基于光谱方法的迭代算法,并将其应用于有向图的新赫米提表示。我们的算法在合成数据集和实际数据集上的表现都优于最先进的算法。此外,它还能识别由 k 个顶点组成的 "元图",该图代表了有向图中聚类之间的高阶关系。我们在有关食物网、生物神经网络和在线纸牌游戏炉石传说的数据集上展示了这种能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of complex networks
Journal of complex networks MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.20
自引率
9.50%
发文量
40
期刊介绍: Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信