{"title":"An iterative spectral algorithm for digraph clustering","authors":"James Martin, Tim Rogers, Luca Zanetti","doi":"10.1093/comnet/cnae016","DOIUrl":null,"url":null,"abstract":"\n Graph clustering is a fundamental technique in data analysis with applications in many different fields. While there is a large body of work on clustering undirected graphs, the problem of clustering directed graphs is much less understood. The analysis is more complex in the directed graph case for two reasons: the clustering must preserve directional information in the relationships between clusters, and directed graphs have non-Hermitian adjacency matrices whose properties are less conducive to traditional spectral methods. Here, we consider the problem of partitioning the vertex set of a directed graph into k≥2 clusters so that edges between different clusters tend to follow the same direction. We present an iterative algorithm based on spectral methods applied to new Hermitian representations of directed graphs. Our algorithm performs favourably against the state-of-the-art, both on synthetic and real-world data sets. Additionally, it can identify a ‘meta-graph’ of k vertices that represents the higher-order relations between clusters in a directed graph. We showcase this capability on data sets about food webs, biological neural networks, and the online card game Hearthstone.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"4 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnae016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Graph clustering is a fundamental technique in data analysis with applications in many different fields. While there is a large body of work on clustering undirected graphs, the problem of clustering directed graphs is much less understood. The analysis is more complex in the directed graph case for two reasons: the clustering must preserve directional information in the relationships between clusters, and directed graphs have non-Hermitian adjacency matrices whose properties are less conducive to traditional spectral methods. Here, we consider the problem of partitioning the vertex set of a directed graph into k≥2 clusters so that edges between different clusters tend to follow the same direction. We present an iterative algorithm based on spectral methods applied to new Hermitian representations of directed graphs. Our algorithm performs favourably against the state-of-the-art, both on synthetic and real-world data sets. Additionally, it can identify a ‘meta-graph’ of k vertices that represents the higher-order relations between clusters in a directed graph. We showcase this capability on data sets about food webs, biological neural networks, and the online card game Hearthstone.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.