Domenik Radeck, Felix He-Mao Hsu, Florian Janke, Gabriele Semino, Tim Hofmann, Sebastian Rink, A. Jocher
{"title":"Propulsion and Suspension Concept of the Technical University of Munich Hyperloop Full-Scale Demonstrator","authors":"Domenik Radeck, Felix He-Mao Hsu, Florian Janke, Gabriele Semino, Tim Hofmann, Sebastian Rink, A. Jocher","doi":"10.3390/asi7020019","DOIUrl":null,"url":null,"abstract":"The hyperloop concept envisions a low pressure tube and capsules, called pods, traveling at the speed of commercial aircraft as a sustainable, future-proof mass transportation system between cities. However, in contrast to the use case of such a system, the detailed technical concept is still under development. One challenging difference in comparison to other modes of transportation lies in the technical concept of the infrastructure, which is hard to change in the long term and therefore allows a few iterations only. This study’s key contribution is to showcase the conceptual design decisions of the 24 m full-scale Hyperloop Demonstrator at the Technical University of Munich (TUM) for the propulsion and suspension system, featuring the design decision tree (DDT) method as a framework to visualize and explain the technical design decisions and dependencies of complex hardware systems. The construction of the full-scale demonstrator not only proved the feasibility of the concept but also provided valuable concept-level experiences, which are shared within this work. Compared to existing maglev and hyperloop concepts, the presented concept features a separated air-cored long stator propulsion system and a homopolar electromagnetic suspension at the bottom with the track wrapping around the vehicle, revealing promising advantages like the structural simplification of the infrastructure and the independence of the guideway and tube.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The hyperloop concept envisions a low pressure tube and capsules, called pods, traveling at the speed of commercial aircraft as a sustainable, future-proof mass transportation system between cities. However, in contrast to the use case of such a system, the detailed technical concept is still under development. One challenging difference in comparison to other modes of transportation lies in the technical concept of the infrastructure, which is hard to change in the long term and therefore allows a few iterations only. This study’s key contribution is to showcase the conceptual design decisions of the 24 m full-scale Hyperloop Demonstrator at the Technical University of Munich (TUM) for the propulsion and suspension system, featuring the design decision tree (DDT) method as a framework to visualize and explain the technical design decisions and dependencies of complex hardware systems. The construction of the full-scale demonstrator not only proved the feasibility of the concept but also provided valuable concept-level experiences, which are shared within this work. Compared to existing maglev and hyperloop concepts, the presented concept features a separated air-cored long stator propulsion system and a homopolar electromagnetic suspension at the bottom with the track wrapping around the vehicle, revealing promising advantages like the structural simplification of the infrastructure and the independence of the guideway and tube.