Exact Insulated-Tip Fin Length Correction for Tip Convection Compensation

Massimo Capobianchi, Richard Cangelosi
{"title":"Exact Insulated-Tip Fin Length Correction for Tip Convection Compensation","authors":"Massimo Capobianchi, Richard Cangelosi","doi":"10.1115/1.4064827","DOIUrl":null,"url":null,"abstract":"\n This study details the derivation of a length correction term for computing the heat transfer performance of one-dimensional, straight, convecting-tip fins using the insulated-tip fin solution. Use of this corrected length in the insulated-tip fin solution produces the identical heat transfer and temperature profile as those computed using the more complex convecting-tip fin equations. The analysis derives the length correction equation from fundamental principles and produces a simple, closed-form expression valid for all fin cross-sectional shapes. Furthermore, the valid parameter range where this length correction is applicable, and outside of which no exact length correction is possible, is quantified.","PeriodicalId":505153,"journal":{"name":"ASME Journal of Heat and Mass Transfer","volume":"10 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study details the derivation of a length correction term for computing the heat transfer performance of one-dimensional, straight, convecting-tip fins using the insulated-tip fin solution. Use of this corrected length in the insulated-tip fin solution produces the identical heat transfer and temperature profile as those computed using the more complex convecting-tip fin equations. The analysis derives the length correction equation from fundamental principles and produces a simple, closed-form expression valid for all fin cross-sectional shapes. Furthermore, the valid parameter range where this length correction is applicable, and outside of which no exact length correction is possible, is quantified.
用于尖端对流补偿的精确绝缘尖端鳍片长度校正
本研究详细介绍了长度修正项的推导过程,该修正项用于使用隔热翅片解决方案计算一维直对流翅片的传热性能。在绝缘鳍片解决方案中使用该修正长度,可产生与使用更复杂的对流鳍片方程计算出的相同的传热和温度曲线。该分析从基本原理中推导出长度修正方程,并得出一个简单的闭式表达式,适用于所有翅片横截面形状。此外,还量化了适用于该长度修正的有效参数范围,在该范围之外则无法进行精确的长度修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信