Counter-Propagating Evanescent Illumination Super-Resolution Chip

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chenlei Pang, Xiaowei Liu, Qianwei Zhang, Zhi Wang, Xiaoyu Yang, Weidong Shen, Xu Liu, Qing Yang
{"title":"Counter-Propagating Evanescent Illumination Super-Resolution Chip","authors":"Chenlei Pang,&nbsp;Xiaowei Liu,&nbsp;Qianwei Zhang,&nbsp;Zhi Wang,&nbsp;Xiaoyu Yang,&nbsp;Weidong Shen,&nbsp;Xu Liu,&nbsp;Qing Yang","doi":"10.1002/adpr.202300341","DOIUrl":null,"url":null,"abstract":"<p>Super-resolution chip (SRC) made of fluorescent polymer film and polygon film waveguide can realize subdiffraction imaging. However, the propagation losses of evanescent waves impose a serious restriction on imaging performance. Meanwhile, the required redundant raw images hinder the imaging speed. Multiple-azimuths evanescent illumination at the same time can efficiently increase the illumination intensity and uniformity, and reduce the number of required raw images. But, the experimental realization is impeded by the complex spatial frequency mixing problem. Herein, an SRC microscopy method with counter-propagating evanescent illumination is demonstrated, which circumvents the influence of complex spatial frequency mixing, and efficiently enhances the reconstructed results. Meanwhile, the proposed method reduces the number of required raw images by half and saves the image acquisition time, which benefits the imaging speed enhancement of the SRC microscopy system and promotes its future practical application.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300341","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution chip (SRC) made of fluorescent polymer film and polygon film waveguide can realize subdiffraction imaging. However, the propagation losses of evanescent waves impose a serious restriction on imaging performance. Meanwhile, the required redundant raw images hinder the imaging speed. Multiple-azimuths evanescent illumination at the same time can efficiently increase the illumination intensity and uniformity, and reduce the number of required raw images. But, the experimental realization is impeded by the complex spatial frequency mixing problem. Herein, an SRC microscopy method with counter-propagating evanescent illumination is demonstrated, which circumvents the influence of complex spatial frequency mixing, and efficiently enhances the reconstructed results. Meanwhile, the proposed method reduces the number of required raw images by half and saves the image acquisition time, which benefits the imaging speed enhancement of the SRC microscopy system and promotes its future practical application.

Abstract Image

反向传播渐变照明超分辨率芯片
由荧光聚合物薄膜和多边形薄膜波导制成的超分辨芯片(SRC)可实现亚衍射成像。然而,蒸发波的传播损耗严重限制了成像性能。同时,所需的冗余原始图像也阻碍了成像速度。同时使用多个渐变波进行蒸发照明可以有效提高照明强度和均匀性,并减少所需的原始图像数量。但是,复杂的空间混频问题阻碍了实验的实现。本文展示了一种具有反向传播的蒸发照明的 SRC 显微镜方法,它可以规避复杂空间频率混合的影响,并有效增强重建结果。同时,所提出的方法将所需的原始图像数量减少了一半,节省了图像采集时间,有利于提高 SRC 显微系统的成像速度,促进其未来的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信