{"title":"DETECTION OF GENES RESPONSIBLE FOR HEAVY METALS RESISTANCE IN LOCALLY ISOLATED PSEUDOMONAS SPP.","authors":"Al-Sajad M. S H.A.A. Alsalim, Researcher Prof.","doi":"10.36103/wgz9vb91","DOIUrl":null,"url":null,"abstract":"Plant growth-promoting rhizobacteria (PGPR) that can tolerate heavy metals, provide the basis for microbial inoculums showing heavy metals tolerance properties. This study was aimed to detect the heavy metal resistance genes in plant-growth-promoting Pseudomonas spp. isolated from many agricultural fields. The collected isolates were screened for their plant growth-promoting (PGP) traits, hydrolytic enzymes, Siderophore, ammonia, and indole-3-acetic acid (IAA). Then, subjected to concentrations of CuSO4, CdCl2, and ZnCl2 to determine the minimum inhibitory concentration (MIC). The DNA was extracted from the selected isolates then PCR test was achieved to detect copA, copB, and czcA genes, responsible for heavy metal resistance. Seventy Pseudomonas spp. isolates were obtained; 41 (58.57%), 6 (8.57%), and 15 (21.42%) isolate produced protease, cellulase, and pectinase, respectively. The isolates were positive for siderophore and ammonia production. However, 68 (97.14%) isolates have produced indole-3-acetic acid. Eight isolates were selected and identified as Pseudomonas aeruginosa using the Vitek 2 compact system. The isolates' resistance to heavy metals differed significantly. The isolate B49 had a higher resistance to CuSO4 (MIC = 3200 µg/ml) and ZnCl2 (MIC = 2600 µg/ml), while the isolate B66 recorded a higher resistance to CdCl2 (MIC = 1000 µg/ml). copB, and czcA genes were detected in the eight P. aeruginosa isolates, while copA gene was detected in seven, except B69.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"12 9","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36103/wgz9vb91","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant growth-promoting rhizobacteria (PGPR) that can tolerate heavy metals, provide the basis for microbial inoculums showing heavy metals tolerance properties. This study was aimed to detect the heavy metal resistance genes in plant-growth-promoting Pseudomonas spp. isolated from many agricultural fields. The collected isolates were screened for their plant growth-promoting (PGP) traits, hydrolytic enzymes, Siderophore, ammonia, and indole-3-acetic acid (IAA). Then, subjected to concentrations of CuSO4, CdCl2, and ZnCl2 to determine the minimum inhibitory concentration (MIC). The DNA was extracted from the selected isolates then PCR test was achieved to detect copA, copB, and czcA genes, responsible for heavy metal resistance. Seventy Pseudomonas spp. isolates were obtained; 41 (58.57%), 6 (8.57%), and 15 (21.42%) isolate produced protease, cellulase, and pectinase, respectively. The isolates were positive for siderophore and ammonia production. However, 68 (97.14%) isolates have produced indole-3-acetic acid. Eight isolates were selected and identified as Pseudomonas aeruginosa using the Vitek 2 compact system. The isolates' resistance to heavy metals differed significantly. The isolate B49 had a higher resistance to CuSO4 (MIC = 3200 µg/ml) and ZnCl2 (MIC = 2600 µg/ml), while the isolate B66 recorded a higher resistance to CdCl2 (MIC = 1000 µg/ml). copB, and czcA genes were detected in the eight P. aeruginosa isolates, while copA gene was detected in seven, except B69.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.