Evaluation of mobile laser scanning acquisition scenarios for automated wood volume estimation in a temperate hardwood forest using Quantitative Structural Models
Bastien Vandendaele, O. Martin-Ducup, Richard A. Fournier, Gaetan Pelletier
{"title":"Evaluation of mobile laser scanning acquisition scenarios for automated wood volume estimation in a temperate hardwood forest using Quantitative Structural Models","authors":"Bastien Vandendaele, O. Martin-Ducup, Richard A. Fournier, Gaetan Pelletier","doi":"10.1139/cjfr-2023-0202","DOIUrl":null,"url":null,"abstract":"This study explores how data from a handheld mobile laser scanning (MLS) system and quantitative structural models (QSM) can be used to estimate tree structural attributes. Four MLS acquisition scenarios were investigated in a 1-ha temperate hardwood stand, including 15 m and 35 m parallel lines, nine circular plots, and a 20 m × 20 m grid. Results were compared against terrestrial laser scanning and destructive field measurements. All acquisition scenarios yielded comparable results, except for the 35 m scenario, which showed greater variability. The 20 m × 20 m grid scenario showed the highest accuracy, with a RMSE of 0.41 m (2.07%) for tree height, 3.98 cm (14.93%) for diameter at breast height, 0.21 m³ (19.28%) for merchantable wood volume, and 0.07 m³ (10.11%) for merchantable stem volume. A bias < 5% was observed for these key attributes, except for an 11.68% bias in merchantable wood volume. Overestimation of branch volume was identified as the primary source of bias related to merchantable wood volume. This study highlights MLS's potential for accurate, non-destructive estimation of tree structural attributes, while pointing out the need to refine noise removal and to assess the most suitable acquisition scenarios for various forest types.","PeriodicalId":9483,"journal":{"name":"Canadian Journal of Forest Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfr-2023-0202","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores how data from a handheld mobile laser scanning (MLS) system and quantitative structural models (QSM) can be used to estimate tree structural attributes. Four MLS acquisition scenarios were investigated in a 1-ha temperate hardwood stand, including 15 m and 35 m parallel lines, nine circular plots, and a 20 m × 20 m grid. Results were compared against terrestrial laser scanning and destructive field measurements. All acquisition scenarios yielded comparable results, except for the 35 m scenario, which showed greater variability. The 20 m × 20 m grid scenario showed the highest accuracy, with a RMSE of 0.41 m (2.07%) for tree height, 3.98 cm (14.93%) for diameter at breast height, 0.21 m³ (19.28%) for merchantable wood volume, and 0.07 m³ (10.11%) for merchantable stem volume. A bias < 5% was observed for these key attributes, except for an 11.68% bias in merchantable wood volume. Overestimation of branch volume was identified as the primary source of bias related to merchantable wood volume. This study highlights MLS's potential for accurate, non-destructive estimation of tree structural attributes, while pointing out the need to refine noise removal and to assess the most suitable acquisition scenarios for various forest types.
期刊介绍:
Published since 1971, the Canadian Journal of Forest Research is a monthly journal that features articles, reviews, notes and concept papers on a broad spectrum of forest sciences, including biometrics, conservation, disturbances, ecology, economics, entomology, genetics, hydrology, management, nutrient cycling, pathology, physiology, remote sensing, silviculture, social sciences, soils, stand dynamics, and wood science, all in relation to the understanding or management of ecosystem services. It also publishes special issues dedicated to a topic of current interest.