Elucidating the FPU-paradox based on the dynamics of Kuznetzov–Ma breathers

N. O. Nfor, Désiré Ndjanfang
{"title":"Elucidating the FPU-paradox based on the dynamics of Kuznetzov–Ma breathers","authors":"N. O. Nfor, Désiré Ndjanfang","doi":"10.1142/s021798492450235x","DOIUrl":null,"url":null,"abstract":"Unlike Zabusky and Kruskal who exploited the Korteweg–de Vries traveling solitons to explain the FPU-recurrence phenomenon, we consider a more robust time periodic Kuznetzov–Ma breather to resolve the paradox. The nonlinear Schrödinger equation is derived from the equation of motion of [Formula: see text]-FPU chain, by using the method of multiple scales combined with a quasi-discreteness approximation. Modulational instability leads to the generation of a nonlinear wave of finite background, known as the Kuznetzov–Ma breather. The spatial localization and time periodic profile of the Kuznetzov–Ma breathers make it ideal in mimicking the FPU-recurrence phenomenon, as underscored by results of numerical simulations.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":"50 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021798492450235x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Unlike Zabusky and Kruskal who exploited the Korteweg–de Vries traveling solitons to explain the FPU-recurrence phenomenon, we consider a more robust time periodic Kuznetzov–Ma breather to resolve the paradox. The nonlinear Schrödinger equation is derived from the equation of motion of [Formula: see text]-FPU chain, by using the method of multiple scales combined with a quasi-discreteness approximation. Modulational instability leads to the generation of a nonlinear wave of finite background, known as the Kuznetzov–Ma breather. The spatial localization and time periodic profile of the Kuznetzov–Ma breathers make it ideal in mimicking the FPU-recurrence phenomenon, as underscored by results of numerical simulations.
基于库兹涅佐夫-马呼吸器动力学的 FPU-paradox 阐释
与扎布斯基和克鲁斯卡尔利用科特韦格-德-弗里斯游动孤子来解释FPU复现现象不同,我们考虑用更稳健的时间周期性库兹涅佐夫-马呼吸器来解决这一悖论。非线性薛定谔方程是从[公式:见正文]-FPU 链的运动方程出发,利用多尺度方法结合准不稳定性近似推导出来的。调制不稳定性导致产生有限背景的非线性波,即库兹涅佐夫-马呼吸波。库兹涅佐夫-马呼吸波的空间局部性和时间周期性特征使其成为模仿 FPU 复现现象的理想选择,数值模拟结果也证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信