The effects of magnetic field and thermal radiation on the mixed convection of Al2O3-Cu/water hybrid nanofluid over a permeable vertical flat plate

Ammar Jafaripournimchahi, A. Shateri, B. Jalili, P. Jalili, D. Ganji
{"title":"The effects of magnetic field and thermal radiation on the mixed convection of Al2O3-Cu/water hybrid nanofluid over a permeable vertical flat plate","authors":"Ammar Jafaripournimchahi, A. Shateri, B. Jalili, P. Jalili, D. Ganji","doi":"10.1142/s0217984924502427","DOIUrl":null,"url":null,"abstract":"This study comprehensively investigates the effect of magnetic fields and thermal radiation on mixed convection in a hybrid alumina–copper/water nanofluid flowing over a permeable vertical flat plate. The study aims to model conventional nanofluid behavior accurately by considering the hybridization of two types of nanoparticles. Conventional similarity transformations and Akbari–Ganji’s method are employed to simplify the governing equations, resulting in ordinary differential equations. Among the dual solutions obtained, only one stable solution is identified. The key findings reveal that boundary layer separation can be avoided by reducing the copper concentration volume and increasing the magnetic and radiation parameters. The mixed convection parameters induce counter-flow, enhancing heat transfer when the magnetic and radiation parameters increase and the copper concentration volume decreases. Conversely, increasing the concentration volume of copper leads to accelerated boundary layer separation and reduced measured physical quantities. Overall, the mixed convection parameter enhances skin friction and heat transfer rates, particularly in the achievable solution. The accuracy of the proposed method is validated through a comparison with the finite element method (FEM). The graphical presentation of the results facilitates a clearer interpretation of the study’s findings.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":"57 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924502427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprehensively investigates the effect of magnetic fields and thermal radiation on mixed convection in a hybrid alumina–copper/water nanofluid flowing over a permeable vertical flat plate. The study aims to model conventional nanofluid behavior accurately by considering the hybridization of two types of nanoparticles. Conventional similarity transformations and Akbari–Ganji’s method are employed to simplify the governing equations, resulting in ordinary differential equations. Among the dual solutions obtained, only one stable solution is identified. The key findings reveal that boundary layer separation can be avoided by reducing the copper concentration volume and increasing the magnetic and radiation parameters. The mixed convection parameters induce counter-flow, enhancing heat transfer when the magnetic and radiation parameters increase and the copper concentration volume decreases. Conversely, increasing the concentration volume of copper leads to accelerated boundary layer separation and reduced measured physical quantities. Overall, the mixed convection parameter enhances skin friction and heat transfer rates, particularly in the achievable solution. The accuracy of the proposed method is validated through a comparison with the finite element method (FEM). The graphical presentation of the results facilitates a clearer interpretation of the study’s findings.
磁场和热辐射对Al2O3-Cu/水混合纳米流体在可渗透垂直平板上混合对流的影响
本研究全面探讨了磁场和热辐射对流过可渗透垂直平板的氧化铝-铜-水混合纳米流体中混合对流的影响。该研究旨在通过考虑两种纳米粒子的杂化来精确模拟传统纳米流体的行为。研究采用了传统的相似变换和 Akbari-Ganji 方法来简化控制方程,从而得到常微分方程。在得到的对偶解中,只确定了一个稳定解。主要研究结果表明,通过减少铜浓度体积、增加磁参数和辐射参数,可以避免边界层分离。当磁场和辐射参数增加、铜浓度体积减小时,混合对流参数会引起逆流,从而增强热传递。相反,增加铜的浓度体积会导致边界层加速分离,减少测量到的物理量。总体而言,混合对流参数提高了表皮摩擦和传热速率,尤其是在可实现的解决方案中。通过与有限元法(FEM)的比较,验证了所提方法的准确性。结果的图形化展示有助于更清晰地解释研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信