{"title":"A Lightweight Neural Network Model for Disease Risk Prediction in Edge Intelligent Computing Architecture","authors":"Feng Zhou, Shijing Hu, Xin Du, Xiaoli Wan, Jie Wu","doi":"10.3390/fi16030075","DOIUrl":null,"url":null,"abstract":"In the current field of disease risk prediction research, there are many methods of using servers for centralized computing to train and infer prediction models. However, this centralized computing method increases storage space, the load on network bandwidth, and the computing pressure on the central server. In this article, we design an image preprocessing method and propose a lightweight neural network model called Linge (Lightweight Neural Network Models for the Edge). We propose a distributed intelligent edge computing technology based on the federated learning algorithm for disease risk prediction. The intelligent edge computing method we proposed for disease risk prediction directly performs prediction model training and inference at the edge without increasing storage space. It also reduces the load on network bandwidth and reduces the computing pressure on the server. The lightweight neural network model we designed has only 7.63 MB of parameters and only takes up 155.28 MB of memory. In the experiment with the Linge model compared with the EfficientNetV2 model, the accuracy and precision increased by 2%, the recall rate increased by 1%, the specificity increased by 4%, the F1 score increased by 3%, and the AUC (Area Under the Curve) value increased by 2%.","PeriodicalId":509567,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16030075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the current field of disease risk prediction research, there are many methods of using servers for centralized computing to train and infer prediction models. However, this centralized computing method increases storage space, the load on network bandwidth, and the computing pressure on the central server. In this article, we design an image preprocessing method and propose a lightweight neural network model called Linge (Lightweight Neural Network Models for the Edge). We propose a distributed intelligent edge computing technology based on the federated learning algorithm for disease risk prediction. The intelligent edge computing method we proposed for disease risk prediction directly performs prediction model training and inference at the edge without increasing storage space. It also reduces the load on network bandwidth and reduces the computing pressure on the server. The lightweight neural network model we designed has only 7.63 MB of parameters and only takes up 155.28 MB of memory. In the experiment with the Linge model compared with the EfficientNetV2 model, the accuracy and precision increased by 2%, the recall rate increased by 1%, the specificity increased by 4%, the F1 score increased by 3%, and the AUC (Area Under the Curve) value increased by 2%.