{"title":"Stochastic representation and conditioning of process-based geological model by deep generative and recognition networks","authors":"S. W. Cheung, A. Kushwaha, H. Sun, X.-H. Wu","doi":"10.1144/petgeo2022-032","DOIUrl":null,"url":null,"abstract":"Accurate and realistic geological modeling is the core of oil and gas development and production. In recent years, process-based methods are developed to produce highly realistic geological models by simulating the physical processes that reproduce the sedimentary events and develop the geometry. However, the complex dynamic processes are extremely expensive to simulate, making process-based models difficult to be conditioned to field data. In this work, we propose a comprehensive generative adversarial network framework as a machine-learning-assisted approach for mimicking the outputs of process-based geological models with fast generation. The main objective of our work is to obtain a continuous parametrization of the highly realistic process-based geological models which enables us to calibrate the models and condition the models to data. Numerical results are presented to illustrate the capability of our proposed methodology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"114 S144","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2022-032","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and realistic geological modeling is the core of oil and gas development and production. In recent years, process-based methods are developed to produce highly realistic geological models by simulating the physical processes that reproduce the sedimentary events and develop the geometry. However, the complex dynamic processes are extremely expensive to simulate, making process-based models difficult to be conditioned to field data. In this work, we propose a comprehensive generative adversarial network framework as a machine-learning-assisted approach for mimicking the outputs of process-based geological models with fast generation. The main objective of our work is to obtain a continuous parametrization of the highly realistic process-based geological models which enables us to calibrate the models and condition the models to data. Numerical results are presented to illustrate the capability of our proposed methodology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.