Ruizhe Xing*, Renliang Huang*, Rongxin Su, Jie Kong, Michael D. Dickey* and Wei Qi,
{"title":"3D-Printing of Hierarchical Porous Copper-Based Metal–Organic-Framework Structures for Efficient Fixed-Bed Catalysts","authors":"Ruizhe Xing*, Renliang Huang*, Rongxin Su, Jie Kong, Michael D. Dickey* and Wei Qi, ","doi":"10.1021/cbe.4c00001","DOIUrl":null,"url":null,"abstract":"<p >Metallic structures with hierarchical open pores that span several orders of magnitude are ideal candidates for various catalyst applications. However, porous metal materials prepared using alloy/dealloy methods still struggle to achieve continuous pore distribution across a broad size range. Herein, we report a printable copper (Cu)/iron (Fe) composite ink that produces a hierarchical porous Cu material with pores spanning over 4 orders of magnitude. The manufacturing process involves four steps: 3D-printing, annealing, dealloying, and reannealing. Because of the unique annealing process, the resulting hierarchical pore surface becomes coated with a layer of Cu–Fe alloy. This feature imparts remarkable catalytic ability and versatile functionality within fixed bed reactors for 4-nitrophenol (4-NP) reduction and Friedländer cyclization. Specifically, for 4-NP reduction, the porous Cu catalyst demonstrates an excellent reaction rate constant (<i>k</i><sub>app</sub> = 86.5 × 10<sup>–3</sup> s<sup>–1</sup>) and a wide adaptability of the substrate (up to 1.26 mM), whilst for Friedländer cyclization, a conversion over 95% within a retention time of only 20 min can be achieved by metal–organic-framework-decorated porous Cu catalyst. The utilization of dual metallic particles as printable inks offers valuable insights for fabricating hierarchical porous metallic structures for applications, such as advanced fixed-bed catalysts.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 3","pages":"264–273"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.4c00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Metallic structures with hierarchical open pores that span several orders of magnitude are ideal candidates for various catalyst applications. However, porous metal materials prepared using alloy/dealloy methods still struggle to achieve continuous pore distribution across a broad size range. Herein, we report a printable copper (Cu)/iron (Fe) composite ink that produces a hierarchical porous Cu material with pores spanning over 4 orders of magnitude. The manufacturing process involves four steps: 3D-printing, annealing, dealloying, and reannealing. Because of the unique annealing process, the resulting hierarchical pore surface becomes coated with a layer of Cu–Fe alloy. This feature imparts remarkable catalytic ability and versatile functionality within fixed bed reactors for 4-nitrophenol (4-NP) reduction and Friedländer cyclization. Specifically, for 4-NP reduction, the porous Cu catalyst demonstrates an excellent reaction rate constant (kapp = 86.5 × 10–3 s–1) and a wide adaptability of the substrate (up to 1.26 mM), whilst for Friedländer cyclization, a conversion over 95% within a retention time of only 20 min can be achieved by metal–organic-framework-decorated porous Cu catalyst. The utilization of dual metallic particles as printable inks offers valuable insights for fabricating hierarchical porous metallic structures for applications, such as advanced fixed-bed catalysts.