A Comprehensive Exploration of Outlier Detection in Unstructured Data for Enhanced Business Intelligence Using Machine Learning

Aishwarya Roy puja, Rasel Mahmud Jewel, Md Salim Chowdhury, Ahmed Ali Linkon, Malay sarkar, Rumana Shahid, Md Al-Imran, Irin Akter Liza, Md Ariful Islam Sarkar
{"title":"A Comprehensive Exploration of Outlier Detection in Unstructured Data for Enhanced Business Intelligence Using Machine Learning","authors":"Aishwarya Roy puja, Rasel Mahmud Jewel, Md Salim Chowdhury, Ahmed Ali Linkon, Malay sarkar, Rumana Shahid, Md Al-Imran, Irin Akter Liza, Md Ariful Islam Sarkar","doi":"10.32996/jbms.2024.6.1.17","DOIUrl":null,"url":null,"abstract":"Due to the rapid growth of online data, it is evident that social informatics faces a significant obstacle. The task of effectively utilizing this abundance of information for business intelligence purposes and extracting valuable insights from it across diverse and heterogeneous platforms presents a daunting challenge. Coordinating AI with business knowledge stands apart as an essential worry in the ongoing scene. Customarily, exceptions were many times excused as boisterous information, bringing about the deficiency of relevant data. This paper highlights the need to rethink how outliers are handled and shed light on the primary research challenges in this mining subfield. It presents a thorough scientific categorization of different Business Knowledge strategies and diagrams their ongoing application areas. Also, the paper talks about future exploration bearings and proposals to overcome any barrier concerning oddities in information examination, consequently empowering more successful business methodologies. This work plans to improve the usage of tremendous web-based information hotspots for better business insight results.","PeriodicalId":505050,"journal":{"name":"Journal of Business and Management Studies","volume":"45 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business and Management Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jbms.2024.6.1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the rapid growth of online data, it is evident that social informatics faces a significant obstacle. The task of effectively utilizing this abundance of information for business intelligence purposes and extracting valuable insights from it across diverse and heterogeneous platforms presents a daunting challenge. Coordinating AI with business knowledge stands apart as an essential worry in the ongoing scene. Customarily, exceptions were many times excused as boisterous information, bringing about the deficiency of relevant data. This paper highlights the need to rethink how outliers are handled and shed light on the primary research challenges in this mining subfield. It presents a thorough scientific categorization of different Business Knowledge strategies and diagrams their ongoing application areas. Also, the paper talks about future exploration bearings and proposals to overcome any barrier concerning oddities in information examination, consequently empowering more successful business methodologies. This work plans to improve the usage of tremendous web-based information hotspots for better business insight results.
利用机器学习全面探索非结构化数据中的异常值检测,以增强商业智能
由于在线数据的快速增长,社会信息学显然面临着巨大的障碍。如何有效地利用这些丰富的信息来实现商业智能目的,并在多样化和异构的平台上从中提取有价值的见解,是一项艰巨的挑战。如何协调人工智能与商业知识,是当前面临的一个重要问题。通常情况下,例外情况常常被认为是喧闹的信息,从而导致相关数据的不足。本文强调了重新思考如何处理异常值的必要性,并阐明了这一挖掘子领域的主要研究挑战。本文对不同的商业知识策略进行了全面的科学分类,并描绘了它们正在进行的应用领域。此外,论文还谈到了未来的探索方向和建议,以克服信息检查中与异常值有关的任何障碍,从而为更成功的商业方法提供支持。这项工作计划改进对基于网络的巨大信息热点的使用,以获得更好的商业洞察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信