Linearity of (generalized) \(*\)-Lie derivations and their structures on \(*\)-algebras

IF 0.8 Q2 MATHEMATICS
Behrooz Fadaee, Hoger Ghahramani, Wu Jing
{"title":"Linearity of (generalized) \\(*\\)-Lie derivations and their structures on \\(*\\)-algebras","authors":"Behrooz Fadaee,&nbsp;Hoger Ghahramani,&nbsp;Wu Jing","doi":"10.1007/s43036-024-00320-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\( {\\mathcal {A}} \\)</span> be a unital <span>\\(*\\)</span>-algebra with characteristic not 2 and containing a nontrivial projection. We show that each nonlinear <span>\\(*\\)</span>-Lie derivation on <span>\\({\\mathcal {A}}\\)</span> is a linear <span>\\(*\\)</span>-derivation. Moreover, we characterize nonlinear left <span>\\(*\\)</span>-Lie centralizers and nonlinear generalized <span>\\(*\\)</span>-Lie derivations. These results are applied to standard operator algebras and von Neumann algebras in complex Hilbert spaces, which generalize some known results.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00320-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \( {\mathcal {A}} \) be a unital \(*\)-algebra with characteristic not 2 and containing a nontrivial projection. We show that each nonlinear \(*\)-Lie derivation on \({\mathcal {A}}\) is a linear \(*\)-derivation. Moreover, we characterize nonlinear left \(*\)-Lie centralizers and nonlinear generalized \(*\)-Lie derivations. These results are applied to standard operator algebras and von Neumann algebras in complex Hilbert spaces, which generalize some known results.

$$*$$-Lie(广义)派生的线性及其在 $$*$$-gebras 上的结构
让 \( {\mathcal {A}} \)是一个特征不为2的单空 \(*\)-代数,并且包含一个非线性投影。我们证明,\({\mathcal {A}}\) 上的每个非线性 \(*\)-Lie 派生都是线性 \(*\)-derivation.此外,我们还描述了非线性左(*\)-Lie 中心子和非线性广义(*\)-Lie 衍生。这些结果被应用于复希尔伯特空间中的标准算子代数和冯-诺依曼代数,它们概括了一些已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信