On the Dirichlet problem for beltrami equations with sources in simply connected domains

Volodymyr Gutlyanskii, O. Nesmelova, V. Ryazanov, E. Yakubov
{"title":"On the Dirichlet problem for beltrami equations with sources in simply connected domains","authors":"Volodymyr Gutlyanskii, O. Nesmelova, V. Ryazanov, E. Yakubov","doi":"10.15407/dopovidi2024.01.003","DOIUrl":null,"url":null,"abstract":"In this paper, we present our recent results on the solvability of the Dirichlet problem Reω(z) → φ (ζ) as z → ζ, z∈ D, ζ∈ ∂D, with continuous boundary data φ: ∂D ???? R for degenerate Beltrami equations ωz =µ(z)ω2 + σ(z), |µ(z) ˂ 1 a.e., with sources σ: D → C that belong to the class Lp (D), p ˃ 2, and have compact supports in D. In the case of locally uniform ellipticity of the equations, we formulate, in arbitrary simply connected domains D of the complex plane C a series of eff ective integral criteria of the type of BMO, FMO, Calderon-Zygmund, Lehto and Orlicz on singularities of the equations at the boundary for existence of locally Hölder continuous solutions in the class W1.2loc (D)  of the Dirichlet problem with their representation through the so-called generalized analytic functions with sources.","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2024.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present our recent results on the solvability of the Dirichlet problem Reω(z) → φ (ζ) as z → ζ, z∈ D, ζ∈ ∂D, with continuous boundary data φ: ∂D ???? R for degenerate Beltrami equations ωz =µ(z)ω2 + σ(z), |µ(z) ˂ 1 a.e., with sources σ: D → C that belong to the class Lp (D), p ˃ 2, and have compact supports in D. In the case of locally uniform ellipticity of the equations, we formulate, in arbitrary simply connected domains D of the complex plane C a series of eff ective integral criteria of the type of BMO, FMO, Calderon-Zygmund, Lehto and Orlicz on singularities of the equations at the boundary for existence of locally Hölder continuous solutions in the class W1.2loc (D)  of the Dirichlet problem with their representation through the so-called generalized analytic functions with sources.
关于简单相连域中有源的贝特拉米方程的德里赫特问题
在本文中,我们介绍了我们最近关于德里赫特问题 Reω(z) →φ (ζ) 的可解性的研究成果,即 z → ζ, z∈ D, ζ∈∂D, 带有连续边界数据 φ: ∂D ???? 的退化贝尔特拉米方程 ωz =µ(z)ω2 + σ(z), |µ(z) ˂ 1 e, 源 φ: ∂D ????R 为退化贝尔特拉米方程 ωz =µ(z)ω2 + σ(z), |µ(z) ˂ 1 a.e., 源为 σ:在方程局部均匀椭圆性的情况下,我们在复平面 C 的任意简单连接域 D 中提出了一系列 BMO、FMO、Calderon-Zygmund、Lehto 和 Orlicz 关于奇异性的有效积分准则,以求在类 W1 中存在局部霍尔德连续解。2loc (D) 迪里夏特问题,并通过所谓的广义源解析函数来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信