Convex decompositions of Q-stochastic tensors and Bell locality in a multipartite system

IF 0.8 Q2 MATHEMATICS
Huai-Xin Cao, Hong-Yi Chen, Zhi-Hua Guo, Tsung-Lin Lee, Ngai-Ching Wong
{"title":"Convex decompositions of Q-stochastic tensors and Bell locality in a multipartite system","authors":"Huai-Xin Cao,&nbsp;Hong-Yi Chen,&nbsp;Zhi-Hua Guo,&nbsp;Tsung-Lin Lee,&nbsp;Ngai-Ching Wong","doi":"10.1007/s43036-024-00316-x","DOIUrl":null,"url":null,"abstract":"<div><p>Generalizing the notions of the row and the column stochastic matrices, we introduce the multidimensional <i>Q</i>-stochastic tensors. We prove that every <i>Q</i>-stochastic tensor can be decomposed as a convex combination of finitely many binary <i>Q</i>-stochastic tensors and that the binary <i>Q</i>-stochastic tensors are exactly the extreme points of the compact convex set of all <i>Q</i>-stochastic tensors with the same size. Applications to characterizing the Bell locality of a quantum state in a multipartite system are demonstrated. Algorithms for computing the convex decompositions of <i>Q</i>-stochastic tensors are provided.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00316-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Generalizing the notions of the row and the column stochastic matrices, we introduce the multidimensional Q-stochastic tensors. We prove that every Q-stochastic tensor can be decomposed as a convex combination of finitely many binary Q-stochastic tensors and that the binary Q-stochastic tensors are exactly the extreme points of the compact convex set of all Q-stochastic tensors with the same size. Applications to characterizing the Bell locality of a quantum state in a multipartite system are demonstrated. Algorithms for computing the convex decompositions of Q-stochastic tensors are provided.

Q-随机张量的凸分解和多方系统中的贝尔位置性
根据行随机矩阵和列随机矩阵的概念,我们引入了多维 Q 随机张量。我们证明,每个 Q 随机张量都可以分解为有限个二元 Q 随机张量的凸组合,而且二元 Q 随机张量正是所有大小相同的 Q 随机张量的紧凑凸集的极值点。演示了在多方系统中表征量子态的贝尔位置性的应用。还提供了计算 Q-随机张量凸分解的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信