{"title":"Can Pressure Data from Wearable Insole Devices Be Utilized to Estimate Low Back Moments for Exoskeleton Control System?","authors":"S. Chae, Ahnryul Choi, Jeehae Kang, J. Mun","doi":"10.3390/act13030092","DOIUrl":null,"url":null,"abstract":"This study presents a machine learning model for predicting lumbar spine moments using data from low-cost sensors, with the ultimate aim of developing a control strategy for waist-active exoskeleton devices. The limitation of sparse features in low-cost insoles was addressed by leveraging a source model constructed based on data acquired from the high-precision Pedar-X device, employing a transfer learning technique. The model’s performance saw significant improvement through a training approach that incorporated high-precision commercial insole data and fine-tuning with low-cost insole data. In comparison to the conventional model, this method resulted in a noteworthy 7% enhancement in performance, achieving an rRMSE of approximately 12% and a correlation coefficient of 0.9 in lumbar joint moment prediction. If the model can demonstrate real-time efficacy and effectiveness across various operations in future applications, it holds substantial potential for deployment as an active exoskeleton device for the waist.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13030092","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a machine learning model for predicting lumbar spine moments using data from low-cost sensors, with the ultimate aim of developing a control strategy for waist-active exoskeleton devices. The limitation of sparse features in low-cost insoles was addressed by leveraging a source model constructed based on data acquired from the high-precision Pedar-X device, employing a transfer learning technique. The model’s performance saw significant improvement through a training approach that incorporated high-precision commercial insole data and fine-tuning with low-cost insole data. In comparison to the conventional model, this method resulted in a noteworthy 7% enhancement in performance, achieving an rRMSE of approximately 12% and a correlation coefficient of 0.9 in lumbar joint moment prediction. If the model can demonstrate real-time efficacy and effectiveness across various operations in future applications, it holds substantial potential for deployment as an active exoskeleton device for the waist.
期刊介绍:
Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.