{"title":"Preparation and application of fluorine-containing acrylate emulsion in two-component waterborne polyurethane coatings","authors":"Aohuan Guo, Jianben Xu, Caili Yu, Faai Zhang","doi":"10.1007/s11998-023-00893-1","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional two-component waterborne polyurethane (2K WPU) has low water resistance, which limits its application in the wide field. In this work, fluorine-modified 2K WPU films (2K-WFPUs) were successfully prepared using a fluorine-modified acrylate emulsion as hydroxyl component and a hydrophilically modified polyisocyanate as curing agent. Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy analysis indicate that hexafluorobutyl acrylate (HFBA) was successfully introduced into the 2K-WFPUs. The effects of HFBA content on the surface, thermal stability, water resistance, mechanical, and application properties of 2K-WFPUs were investigated. Compared with the unmodified film, with the increase in HFBA level from 0 to 8%, the static water contact angle of 2K-WFPUs increased from 66° to 92°, the surface-free energy decreased from 42.7 to 28.4 mJ m<sup>−2</sup>, the water absorption reduced from 15.9 to 9.9%. Thermogravimetric analysis shows that the thermal stabilities of 2K-WFPUs were improved remarkably. Meanwhile, adding HFBA did not weaken the impact resistance, flexibility, and adhesion of 2K-WFPUs and maintained the highest level. The fluorine-modified 2K WPU coatings have potential application in wood furniture and automotive finishing.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 4","pages":"1311 - 1320"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-023-00893-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional two-component waterborne polyurethane (2K WPU) has low water resistance, which limits its application in the wide field. In this work, fluorine-modified 2K WPU films (2K-WFPUs) were successfully prepared using a fluorine-modified acrylate emulsion as hydroxyl component and a hydrophilically modified polyisocyanate as curing agent. Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy analysis indicate that hexafluorobutyl acrylate (HFBA) was successfully introduced into the 2K-WFPUs. The effects of HFBA content on the surface, thermal stability, water resistance, mechanical, and application properties of 2K-WFPUs were investigated. Compared with the unmodified film, with the increase in HFBA level from 0 to 8%, the static water contact angle of 2K-WFPUs increased from 66° to 92°, the surface-free energy decreased from 42.7 to 28.4 mJ m−2, the water absorption reduced from 15.9 to 9.9%. Thermogravimetric analysis shows that the thermal stabilities of 2K-WFPUs were improved remarkably. Meanwhile, adding HFBA did not weaken the impact resistance, flexibility, and adhesion of 2K-WFPUs and maintained the highest level. The fluorine-modified 2K WPU coatings have potential application in wood furniture and automotive finishing.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.